1
|
Nazrin A, Kuan T, Mansour DEA, Farade RA, Ariffin AM, Rahman MA, Abdul Wahab NIB. Innovative approaches for augmenting dielectric properties in cross-linked polyethylene (XLPE): A review. Heliyon 2024; 10:e34737. [PMID: 39170543 PMCID: PMC11336368 DOI: 10.1016/j.heliyon.2024.e34737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Throughout the history of power systems, power cables have been used to securely and efficiently distribute electrical energy to the destined locations. Cross-linked polyethylene (XLPE), a commonly used insulator in high-voltage cables, have several desirable properties, such as low dielectric loss, high dielectric constant, high thermal conductivity, enhanced thermal stability, and superior resistance against electrical stress. However, further improvements of XLPE's performance are needed. The incorporation of large specific surface area nanoparticles, such as boron nitride nanosheets and graphene oxide, exhibited a great potential in enhancing XLPE's properties. These nanoparticles create numerous trapping sites, even at small loading levels, due to their large interfacial regions. In addition, voltage stabilisers with polar groups can scavenge high-energy electrons generated by local electric fields, thereby inhibiting the electrical tree growth. Another important aspect of enhancing XLPE's dielectric performance is the inclusion of antioxidants with phenolic groups. These antioxidants react with peroxyl radicals, mitigating their harmful effects. This review summarises the effects of nanoparticles, voltage stabilisers, antioxidants, and polymer amalgamation on dielectric performance of XLPE as an insulation material. The major challenges in dielectric insulation such as breakdown voltage strength, electrical tree growth, structural defect, space charge accumulation, and thermal aging are addressed.
Collapse
Affiliation(s)
- A. Nazrin
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - T.M. Kuan
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Diaa-Eldin A. Mansour
- Department of Electrical Power and Machines Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
- Department of Electrical Power Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Rizwan A. Farade
- Advanced Lightning, Power and Energy Research (ALPER), Department of Electrical and Electronics Engineering, Faculty of Engineering, University Putra Malaysia, 43400, Serdang, Malaysia
| | - A. Mohd Ariffin
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - M.S. Abd Rahman
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Noor Izzri Bin Abdul Wahab
- Advanced Lightning, Power and Energy Research (ALPER), Department of Electrical and Electronics Engineering, Faculty of Engineering, University Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
2
|
Meng Z, Zhang T, Zhang C, Shang Y, Lei Q, Chi Q. Advances in Polymer Dielectrics with High Energy Storage Performance by Designing Electric Charge Trap Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310272. [PMID: 38109702 DOI: 10.1002/adma.202310272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Dielectric capacitors have been developed for nearly a century, and all-polymer film capacitors are currently the most popular. Much effort has been devoted to studying polymer dielectric capacitors and improving their capacitive performance, but their high conductivity and capacitance losses under high electric fields or elevated temperatures are still significant challenges. Although many review articles have reported various strategies to address these problems, to the best of current knowledge, no review article has summarized the recent progress in the high-energy storage performance of polymer-based dielectric films with electric charge trap structures. Therefore, this paper first reviews the charge trap characterization methods for polymeric dielectrics and discusses their strengths and weaknesses. The research progress on the design of charge trap structures in polymer dielectric films, including molecular chain optimization, organic doping, blending modification, inorganic doping, multilayered structures, and the mechanisms of the charge trap-induced enhancement of the capacitive performance of polymers are systematically reviewed. Finally, a summary and outlook on the fundamental theory of charge trap regulation, performance characterization, numerical calculations, and engineering applications are presented. This review provides a valuable reference for improving the insulation and energy storage performance of dielectric capacitive films.
Collapse
Affiliation(s)
- Zhaotong Meng
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Tiandong Zhang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Changhai Zhang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yanan Shang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Qingquan Lei
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Qingguo Chi
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
3
|
Wang Y, Jiang X, Li X, Ding K, Liu X, Huang B, Ding J, Qu K, Sun W, Xue Z, Xu W. Bionic ordered structured hydrogels: structure types, design strategies, optimization mechanism of mechanical properties and applications. MATERIALS HORIZONS 2023; 10:4033-4058. [PMID: 37522298 DOI: 10.1039/d3mh00326d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Natural organisms, such as lobsters, lotus, and humans, exhibit exceptional mechanical properties due to their ordered structures. However, traditional hydrogels have limitations in their mechanical and physical properties due to their disordered molecular structures when compared with natural organisms. Therefore, inspired by nature and the properties of hydrogels similar to those of biological soft tissues, researchers are increasingly focusing on how to investigate bionic ordered structured hydrogels and render them as bioengineering soft materials with unique mechanical properties. In this paper, we systematically introduce the various structure types, design strategies, and optimization mechanisms used to enhance the strength, toughness, and anti-fatigue properties of bionic ordered structured hydrogels in recent years. We further review the potential applications of bionic ordered structured hydrogels in various fields, including sensors, bioremediation materials, actuators, and impact-resistant materials. Finally, we summarize the challenges and future development prospects of bionic ordered structured hydrogels in preparation and applications.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xinyu Jiang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xusheng Li
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Kexin Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xianrui Liu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Bin Huang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Junjie Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Keyu Qu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenzhi Sun
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Zhongxin Xue
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| |
Collapse
|
4
|
Gao JG, Liu LW, Sun WF. Dielectric Characteristics of Crosslinked Polyethylene Modified by Grafting Polar-Group Molecules. Polymers (Basel) 2023; 15:polym15010231. [PMID: 36616579 PMCID: PMC9823466 DOI: 10.3390/polym15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polar group-modified crosslinked polyethylene (XLPE) materials are developed with a peroxide thermochemical method of individually grafting chloroacetic acid allyl ester (CAAE) and maleic anhydride (MAH) to polyethylene molecular-chains, which are dedicated to ameliorating dielectric characteristics through charge-trapping mechanism. By free radical addition reactions, the CAAE and MAH molecules are successfully grafted to polyethylene molecular chains of XLPE in crosslinking process, as verified by infrared spectroscopy molecular characterizations. Dielectric spectra, electric conductance, and dielectric breakdown strength are tested to evaluate the improved dielectric performances. Charge trap characteristics are investigated by analyzing thermal stimulation depolarization currents in combination with first-principles electronic-structure calculations to reveal the polar-group introduced mechanisms of contributing dipole dielectric polarization, impeding electric conduction, and promoting electrical breakdown field. The grafted polar-group molecules, especially for MAH, can introduce deep-level charge traps in XLPE materials to effectively restrict charge injections and hinder charge carrier transports, which accounts for the significant improvements in electric resistance and dielectric breakdown strength.
Collapse
Affiliation(s)
- Jun-Guo Gao
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Li-Wei Liu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Wei-Feng Sun
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence:
| |
Collapse
|
5
|
Ren Y, Deng W, Li W, Zhao H. Graftable voltage stabilizer for enhancing insulation performance of crosslinked polyethylene. J Appl Polym Sci 2022. [DOI: 10.1002/app.52703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyuan Ren
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Wei Deng
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
- Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education Harbin University of Science and Technology Harbin China
| | - Wanyu Li
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Hong Zhao
- Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education Harbin University of Science and Technology Harbin China
| |
Collapse
|
6
|
Karaca N. The synthesis and characterization of polyorganosiloxane nanoparticles from 3-mercaptopropyltrimethoxysilane for preparation of nanocomposite films via photoinitiated thiol-ene polymerization. Turk J Chem 2021; 45:761-774. [PMID: 34385866 PMCID: PMC8326481 DOI: 10.3906/kim-2012-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022] Open
Abstract
This article describes the synthesis of modified silica nanoparticles (SiO2-MPTMS) via the condensation reaction carried out between silanol moieties of silica nanoparticles and the trialkoxy silyl groups of (3-mercaptopropyl) trimethoxysilane (MPTMS). Then, SiO2-MPTMS nanoparticles in certain amounts (0.5 wt %, 1 wt %, 2.5 wt % and 5 wt %) were incorporated into thiol-ene resins consisting of bisphenol A glycerolate dimethacrylate and trimethylolpropane tris(3-mercaptopropionate) to prepare nanocomposite films via the photoinitiated thiol-ene polymerization in presence of 2,2-Dimethoxy-2-phenylacetophenone 99% as a photoinitiator. Fourier transform infrared spectroscopy, dynamic light scattering, scanning transmission electron microscopy, thermal gravimetric analyzer, and X-ray photoelectron spectrometer were employed to characterize SiO2-MPTMS nanoparticles. It was revealed that the nanosilica surface was successfully grafted by MPTMS with the grafting ratio of 22.9%. Properties of the nanocomposite films such as decomposition temperature, thermal glass transition temperature, tensile strength, hardness, and particle distribution were investigated and the results were compared with each other and neat film. The addition of MPTMS-modified silica particles did not improve the thermal stability of the films. In scanning electron microscopy study, it was seen that 2.5 wt % of these nanoparticles used as additives were about 200 nm in size and dispersed homogeneously in the polymer matrix. The increase in tensile strength of nanocomposite films compared to the neat film was measured as 77.3% maximum.
Collapse
Affiliation(s)
- Nurcan Karaca
- Central Research Laboratory Research and Application Center, Yalova University, Yalova Turkey
| |
Collapse
|