1
|
Zhou BC, Chen BZ, Song TT, Yang Y, Zhang LM, Ji DW, Wan B, Chen QA. Hydrated [3+2] Cyclotelomerization of Butafulvenes to Create Multiple Contiguous Fully Substituted Carbon Centers. Angew Chem Int Ed Engl 2024; 63:e202317299. [PMID: 38105386 DOI: 10.1002/anie.202317299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
The construction of multiple continuous fully substituted carbon centers, which serve as unique structural motif in natural products, is a challenging topic in organic synthesis. Herein, we report a hydrated [3+2] cyclotelomerization of butafulvenes to create contiguous fully substituted carbon backbone. In the presence of scandium triflate, all-carbon skeleton with spiro fused tricyclic ring can be constructed in high diastereoselectivity by utilizing butafulvene as the synthon. Mechanistic studies suggest that this atom-economic reaction probably proceeds through a synergistic process containing butafulvenes dimerization and nucleophilic attack by water. In addition, the tricyclic product can undergo a series of synthetic derivatizations, which highlights the potential applications of this strategy. The recyclability of Sc(OTf)3 has also been demonstrated to show its robust performance in this hydrated cyclotelomerization.
Collapse
Affiliation(s)
- Bo-Chao Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Li-Ming Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Lu HH, Gan KJ, Ni FQ, Zhang Z, Zhu Y. Concise Total Synthesis of Salimabromide. J Am Chem Soc 2022; 144:18778-18783. [PMID: 36194507 DOI: 10.1021/jacs.2c08337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We achieved a concise total synthesis of salimabromide by using a novel intramolecular radical cyclization to simultaneously construct the unique benzo-fused [4.3.1] carbon skeleton and the vicinal quaternary stereocenters. Other notable transformations include a tandem Michael/Mukaiyama aldol reaction to introduce most of the molecule's structural elements, along with hidden information for late-stage transformations, an intriguing tandem oxidative cyclization of a diene to form the bridged butyrolactone and enone moieties spontaneously, and a highly enantioselective hydrogenation of a cycloheptenone derivative (97% ee) that paved the way for the asymmetric synthesis of salimabromide.
Collapse
Affiliation(s)
- Hai-Hua Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang-Ji Gan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fu-Qiang Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Zhihan Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Yao Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
3
|
Wang X, Liu F, Xu T. Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|