1
|
Wang HC, Wu PE, He WD, Chen CY, Zheng RQ, Pang YC, Wu LC, Cheng YX, Liu YQ. Centipeda minima extracts and the active sesquiterpene lactones have therapeutic efficacy in non-small cell lung cancer by suppressing Skp2/p27 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119277. [PMID: 39722328 DOI: 10.1016/j.jep.2024.119277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Centipeda minima (L.) A. Braun & Asch (C. minima) was applied to treat nasal allergy, headache, cough, and even nasopharyngeal carcinoma in traditional Chinese medicine. However, the underlying anticancer mechanisms of C. minima and its active components have not been systematically illustrated. AIM OF THE STUDY The study aims to examine the therapeutic efficacy of the ethanol extract of C. minima (ECM) and its active components in non-small cell lung cancer (NSCLC) and illustrate the underlying mechanisms. MATERIALS AND METHODS The main chemical components in the ethanol extract of C. minima (ECM) and the supercritical CO2 fluid extract of C. minima (CM-SFE) were determined by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The antitumor effects of ECM and CM-SFE were examined by using NSCLC cell xenografts. The flow cytometry, cell colony formation, wound-healing, transwell assay, and Western blotting were conducted to investigate the anticancer properties of ECM, CM-SFE, and these sesquiterpene lactones that abundantly distributed in these extracts. RESULTS We first determined that ECM contains high levels of sesquiterpene lactones. ECM can markedly induce cell cycle arrest and suppress migration and invasion of NSCLC cells. Mechanistically, ECM promoted proteasome-dependent degradation of Skp2 protein and induced the accumulation of its substrates p27; whereas Skp2 overexpression can attenuate the inhibitory effects of ECM on NSCLC proliferation and migration. Moreover, ECM at 200-600 mg/kg can significantly inhibit tumor growth and metastasis in A549-luciferase cell orthotopic xenografts by suppressing Skp2 expression. The sesquiterpene lactones that abundantly distributed in ECM, including 6-O-angeloylplenolin (6-OAP), arnicolide D (ArD) and arnicolide C (ArC), were also demonstrated to decrease Skp2 while increase p27 protein level, thereby significantly inducing cell cycle arrest and suppressing migration of NSCLC cells. Notably, CM-SFE, which mainly consisted of 6-OAP, ArD and ArC, exhibited much stronger anti-NSCLC activity than that of ECM in A549-luciferase cell orthotopic xenografts. CONCLUSION Our results demonstrate that the active components in C. minima possesses potential anti-NSCLC activities by suppressing Skp2/p27 signaling pathway, and these active sesquiterpene lactones can be further developed as potent Skp2 inhibitor to treat NSCLC.
Collapse
Affiliation(s)
- Han-Chen Wang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Pei-En Wu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Wen-Da He
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Chu-Ying Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Rou-Qiao Zheng
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Yan-Chun Pang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Li-Chuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Yong-Xian Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
2
|
Toma (Sărdărescu) DI, Manaila-Maximean D, Fierascu I, Baroi AM, Matei (Brazdis) RI, Fistos T, Chican IE, Fierascu RC. Applications of Natural Polymers in the Grapevine Industry: Plant Protection and Value-Added Utilization of Waste. Polymers (Basel) 2024; 17:18. [PMID: 39795420 PMCID: PMC11722739 DOI: 10.3390/polym17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The grapevine industry is confronted with challenges such as plant stress from environmental factors and microbial infections, alongside the need for sustainable waste management practices. Natural polymers offer promising solutions to these issues due to their biocompatibility, biodegradability, and functional versatility. This review explores the dual role of natural polymers in enhancing the grapevine industry: as protective agents against various stressors and as carriers for the delivery of valuable compounds recovered from grapevine wastes. We examine the use of natural polymers such as chitosan, alginate, and cellulose in formulating bio-based protective coatings and treatments that bolster plant resistance to abiotic stress, pathogens, and pests. Additionally, the review delves into the innovative utilization of grapevine residues, including skins, seeds, and stems, as sources of polyphenols and other bioactive compounds. These compounds can be efficiently encapsulated in natural polymer matrices for applications in agriculture, food, and pharmaceuticals. Key topics include the mechanisms of action, benefits, and limitations of natural polymer-based interventions, as well as case studies demonstrating their practical implementation in vineyards. The review also addresses future research directions, emphasizing the need for integrated approaches that enhance sustainability and economic viability in the grapevine industry.
Collapse
Affiliation(s)
- Daniela-Ionela Toma (Sărdărescu)
- National Research and Development Institute for Biotechnology in Horticulture–INCDBH, 37 Bucuresti-Pitesti Str., 117715 Ștefănești, Romania;
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| | - Doina Manaila-Maximean
- Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Roxana Ioana Matei (Brazdis)
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Irina Elena Chican
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Radu Claudiu Fierascu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| |
Collapse
|
3
|
Chauca-Cerrutti A, Inga M, Pasquel-Reátegui JL, Betalleluz-Pallardel I, Puma-Isuiza G. Optimization of extraction in supercritical fluids in obtaining Pouteria lucuma seed oil by response surface methodology and artificial neuronal network coupled with a genetic algorithm. Front Chem 2024; 12:1491479. [PMID: 39720553 PMCID: PMC11666378 DOI: 10.3389/fchem.2024.1491479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 12/26/2024] Open
Abstract
When processing lucuma (Pouteria lucuma), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact. LS was previously characterized, and the extraction parameters were optimized using a Box-Behnken design, considering temperature (40-60°C), pressure (100-300 bar), and CO2 flow rate (3-7 mL/min), applying the response surface methodology (RSM) and neural networks with genetic algorithm (ANN+GA). The optimal parameters were 45°C, 300 bar, and 6 mL/min, obtaining 97.35% of the total oil content. The RSM and ANN+GA models showed R2 values of 0.9891 and 0.9999 respectively, indicating that both models exhibited a good fit to the experimental data. However, ANN+GA provided a greater proportion of the total variability, which facilitates the identification of the optimal parameters for the extraction of oil from lucuma seeds. Compared to the Soxhlet method, the LSO obtained by SCF presented better acidity (4.127 mg KOH/g), iodine (100.294 g I2/100 g), and refraction indices (1.4710), as well as to a higher content of mono- and polyunsaturated fatty acids. Supercritical CO2 extraction is presented as a sustainable green alternative to Soxhlet extraction for extracting oil from lucuma seed due to its high extraction efficiency and similar fatty acid profile.
Collapse
Affiliation(s)
- Alex Chauca-Cerrutti
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Marianela Inga
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - José Luis Pasquel-Reátegui
- Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, San Martin, Peru
| | | | - Gustavo Puma-Isuiza
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
4
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
5
|
Friščić M, Vilić K, Jurić S, Pilepić KH, Maleš Ž. Total phenolic content, flavonoid content and antioxidant potential of Petasites hybridus and related species from Croatia and considerations regarding their pharmaceutical significance. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:709-723. [PMID: 39560317 DOI: 10.2478/acph-2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 11/20/2024]
Abstract
Extracts obtained from common butterbur (Petasites hybridus), standardized to petasins, are existing pharmaceutical options for the treatment and/or prevention of allergic rhinitis (leaves) and migraine (rhizomes). In this study, the total phenolic content, flavonoid content, and antioxidant potential of ten samples of Croatian Petasites species (four P. hybridus, four P. albus, one P. kabli kianus, and one P. paradoxus) obtained by ultrasound-assisted extraction of leaves were compared. The total phenolic content (Folin-Ciocalteu assay) of methanolic leaf extracts ranged from 4.43 ± 0.09 to 10.76 ± 0.60 mg gallic acid equivalent g-1 dry mass (mg GAE g-1 DM) for P. hybridus and from 6.66 ± 0.43 to 19.92 ± 2.90 mg GAE g-1 DM for P. albus samples, while those of P. kablikianus and P. paradoxus were equal to 7.56 ± 0.17 mg GAE g-1 DM and 10.22 ± 0.46 mg GAE g-1 DM, respectively. Flavonoid content (AlCl3 assay) varied between 2.51 ± 0.10 and 4.03 ± 0.08 mg quercetin equivalent g-1 dry mass (mg QE g-1 DM) for P. hybridus and between 2.21 ± 0.09 and 5.22 ± 0.02 mg QE g-1 DM for P. albus samples, while those of P. kablikianus and P. paradoxus were equal to 5.59 ± 0.05 mg QE g-1 DM and 5.50 ± 0.09 mg QE g-1 DM, respectively. Antioxidant potential was in high correlation with total phenolic content (r = 0.93, p < 0.001). Due to the expected contribution of plant polyphenols and flavonoids to the activity of butterbur extracts and their observed great variabilities, determining the content of these compounds may be of interest to the pharmaceutical industry.
Collapse
Affiliation(s)
- Maja Friščić
- University of Zagreb Faculty of Pharmacy and Biochemistry Department of Pharmaceutical Botany, 10 000 Zagreb, Croatia
| | - Katarina Vilić
- University of Zagreb Faculty of Pharmacy and Biochemistry Department of Pharmaceutical Botany, 10 000 Zagreb, Croatia
- General Hospital "Dr. Tomislav Bardek", 48 000 Koprivnica, Croatia
| | - Sandra Jurić
- University of Zagreb Faculty of Pharmacy and Biochemistry Department of Organic Chemistry 10 000 Zagreb, Croatia
| | - Kroata Hazler Pilepić
- University of Zagreb Faculty of Pharmacy and Biochemistry Department of Pharmaceutical Botany, 10 000 Zagreb, Croatia
| | - Željan Maleš
- University of Zagreb Faculty of Pharmacy and Biochemistry Department of Pharmaceutical Botany, 10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Basile G, De Luca L, Sorrentino G, Calabrese M, Esposito M, Pizzolongo F, Romano R. Green technologies for extracting plant waste functional ingredients and new food formulation: A review. J Food Sci 2024; 89:8156-8174. [PMID: 39495566 DOI: 10.1111/1750-3841.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Nowadays, there is a growing interest in food waste recovery by both consumers and companies. Food waste of plant origin is a source of bioactive compounds, such as phenolic acids, anthocyanins, flavonoids, phytosterols, carotenoids, and tocopherols, with well-known antioxidant, anti-glycemic, and antimicrobial properties. The use of green and sustainable technologies to recover bioactive compounds from food waste is a possible solution to valorize waste following the principles of green chemistry. Furthermore, today's consumers are more attracted, informed, and aware of the benefits associated with the consumption of functional foods, and with this in mind, the use of extracts rich in beneficial compounds obtained by green technologies from food waste can be a valid alternative to prepare functional foods. In this review, the recovery of polyphenols and fibers with green technologies from food waste for the formulation of functional foods was presented.
Collapse
Affiliation(s)
- Giulia Basile
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Giovanni Sorrentino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Martina Calabrese
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Mariarca Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| |
Collapse
|
7
|
Nguyen DT, Johir MAH, Mahlia TMI, Silitonga AS, Zhang X, Liu Q, Nghiem LD. Microalgae-derived biolubricants: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176759. [PMID: 39393688 DOI: 10.1016/j.scitotenv.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Lubricants are indispensable in the modern economy for controlling friction and wear across many industries. Traditional lubricants are derived from petroleum crude and can cause significant ecological impact if released into the environment. Microalgae have emerged as a potential alternative to petroleum crude for producing renewable and environmentally friendly biolubricants. This review systematically assesses recent developments in microalgal-based biolubricant production, including tribological performance, microalgae selection, cultivation, harvesting, lipid and polysaccharide extraction and conversion to biolubricants, and market development. Compared to petroleum-based lubricants in terms of tribological properties, biolubricants are compatible with most emerging applications, such as electric vehicles and wind turbines. Nevertheless, they are less thermally and chemically stable, thus, may not be suitable for some traditional applications such as internal combustion engines. Literature data corroborated in this study reveals an urgent need for further research to scale up microalgae production and lower the cost of biomass harvesting. While technologies for converting microalgae-derived lipids to biolubricants appear to be well established, additional work is necessary to also utilize polysaccharides as another key ingredient for producing biolubricants, especially for low-temperature applications. Extraction methods are well established but further research is also needed to reduce the ecological impact, especially to utilize green solvents and reduce solvent consumption. Additionally, future research should delve into the use of nanoparticles as effective additives to obtain microalgae-based biolubricants with superior properties. Finally, it is essential to standardize the labeling system of biolubricants to establish a global market.
Collapse
Affiliation(s)
- Duong T Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - A S Silitonga
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaolei Zhang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
8
|
Teslić N, Pojić M, Stupar A, Mandić A, Mišan A, Pavlić B. PhInd database - Polyphenol content in Agri-food by-products and trends in extraction technologies: A critical review. Food Chem 2024; 458:140474. [PMID: 39043067 DOI: 10.1016/j.foodchem.2024.140474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
Sustainable Development Goal 12 and target 12.3 set by the United Nations aims to reduce"food waste" per capita global for 50% losses by 2030. Databases such as the PhInd could help us to achieve set goals via mapping the potential ways for valorization of polyphenols from the agri-food by-products and waste. Fruit by-products (73.2% of the PhInd entries) are the most studied sources of polyphenols and future studies might be more focused on vegetables. More than half (55.8%) of entries were evaluated polyphenols in samples created in laboratory. These samples could have significantly different composition from industrial samples. Solid-liquid extraction (53.5%) and solvents like water, ethanol and aqueous ethanol (51.5%) were the most often used for extraction of polyphenols. Green solvents as NADES (0.4%) are rarely used in studies and should be more explored.
Collapse
Affiliation(s)
- Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Milica Pojić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Anamarija Mandić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Aleksandra Mišan
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, BP, Serbia.
| |
Collapse
|
9
|
Le DD, Jang YS, Truong V, Dinh T, Dang T, Yu S, Lee M. Anti-Inflammatory Effects and Metabolomic Analysis of Ilex Rotunda Extracted by Supercritical Fluid Extraction. Int J Mol Sci 2024; 25:11965. [PMID: 39596036 PMCID: PMC11593382 DOI: 10.3390/ijms252211965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Ilex rotunda is a famous medicinal plant with many ethnopharmacological uses. It is traditionally employed for treating inflammation and cardiovascular diseases. In this study, we established green technology to extract the leaves and twigs of I. rotunda. The obtained extracts and their fractions were evaluated for their anti-inflammatory potential. In cytokine assays, the extract, n-hexane (H), methylene chloride (MC), and EtOAc (E) fractions of the twigs of I. rotunda significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α production in RAW264.7 macrophages. Furthermore, the extract, H, and MC fractions of the leaves of I. rotunda modulated cytokine expression by downregulating LPS-induced NO, IL-6, and TNF-α production in RAW264.7 macrophages. Western blotting analysis revealed that the extracts and fractions of the leaves and twigs of I. rotunda inhibited inflammatory cytokines by inactivating nuclear factor kappa B (NFκB) action by reducing the phosphorylation of transcript factor (p65) and nuclear factor-kappa B inhibitor alpha (IκBα) degradation, or by inactivating mitogen-activated protein kinase (MAPK) through the p38 or ERK signaling pathways via the active ingredients of the leaves and twigs of I. rotunda. Ultra-high-resolution liquid chromatography-Orbitrap mass analysis (UHPLC-ESI-Orbitrap-MS/MS)-based molecular networking, in cooperation with social open platform-guided isolation and dereplication, led to the identification of metabolites in this plant. Our findings indicate that the leaves and twigs of I. rotunda could be promising candidates for developing therapeutic strategies to treat anti-inflammatory diseases.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Young Su Jang
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Vinhquang Truong
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thientam Dinh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thinhulinh Dang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Soojung Yu
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
10
|
Versteeg FG, Picchioni F. Reversible Addition-Fragmentation Chain-Transfer Polymerization in Supercritical CO 2: A Review. Macromol Rapid Commun 2024; 45:e2400514. [PMID: 39259254 PMCID: PMC11583296 DOI: 10.1002/marc.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Indexed: 09/12/2024]
Abstract
The development of cleaner, more environmentally friendly processes in polymerization technology is crucial due to the prevalent use of volatile organic solvents (VOCs), which are harmful and toxic. Future regulations are likely to limit or ban VOCs. This review explores the use of supercritical solvents, specifically supercritical CO2 (scCO2), in polymerization processes. The study focuses on reversible addition-fragmentation chain-transfer (RAFT) induced homo-polymerization of various monomers using specific chain transfer agents (CTAs) in scCO2. RAFT polymerization, a reversible deactivation radical polymerization (RDRP) polymerization, relies heavily on the choice of CTA, which significantly influences the dispersity and molar mass of the resulting polymers. Stabilizers are also crucial in controlling product specifications for polymerizations in supercritical CO2, except for fluor-based polymers, although they must be removed and preferably recycled to ensure product purity and sustainability. The review notes that achieving high molar mass through RAFT polymerization in scCO2 is challenging due to solubility limits, which lead to polymer precipitation. Despite this, RAFT polymerization in scCO2 shows promise for sustainable, circular production of low molar mass polymers, although these cannot yet be fully considered green products.
Collapse
Affiliation(s)
- Friso G. Versteeg
- Department of Chemical Engineering – Product TechnologyUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering – Product TechnologyUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
11
|
Aili Q, Cui D, Li Y, Zhige W, Yongping W, Minfen Y, Dongbin L, Xiao R, Qiang W. Composing functional food from agro-forest wastes: Selectively extracting bioactive compounds using supercritical fluid extraction. Food Chem 2024; 455:139848. [PMID: 38823122 DOI: 10.1016/j.foodchem.2024.139848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Supercritical fluid extraction (SFE) employing carbon dioxide (SC-CO2) is an efficient method to extract bioactive compounds from agro-forest wastes. These compounds maintain and/or improve food nutrition, safety, freshness, taste, and health and are employed as natural functional food components. To highlight the potential of this technology, we focus on the following current advances: (I) parameters affecting solubility in SFE (pressure, temperature, SC-CO2 flow rate, extraction time, and co-solvents); (II) extraction spectra and yield obtained according to proportion and composition of co-solvents; (III) extract bioactivity for functional food production. Fatty acids, monoterpenes, sesquiterpenes, diterpenoids, and low-polarity phenolic acids and triterpenoids were extracted using SFE without a co-solvent. High-polarity phenolic acids and flavonoids, tannins, carotenoids, and alkaloids were only extracted with the help of co-solvents. Using a co-solvent significantly improved the triterpenoid, flavonoid, and phenolic acid yield with a medium polarity.
Collapse
Affiliation(s)
- Qu Aili
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Du Cui
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Yang Li
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Wu Zhige
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China
| | - Wu Yongping
- School of Electromechanical and Energy Engineering, NingboTech University, Ningbo 315100, PR China
| | - Yu Minfen
- Ningbo Bureau of Natural Resources and Planning, Ningbo Forest Farm, Ningbo 315440, PR China
| | - Li Dongbin
- Ningbo Bureau of Natural Resources and Planning, Ningbo Forest Farm, Ningbo 315440, PR China
| | - Ruan Xiao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China.
| | - Wang Qiang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China.
| |
Collapse
|
12
|
Mirzazadeh N, Bagheri H, Mirzazadeh M, Soleimanimehr S, Rasi F, Akhavan‐Mahdavi S. Comparison of different green extraction methods used for the extraction of anthocyanin from red onion skin. Food Sci Nutr 2024; 12:7347-7357. [PMID: 39479718 PMCID: PMC11521669 DOI: 10.1002/fsn3.4354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 11/02/2024] Open
Abstract
Green extraction primarily emphasizes developing new extraction techniques that consume less energy. It involves using safe, non-toxic alternative solvents and sustainable natural resources to ensure the production of safe and high-quality extracts. Red onion skin is an important source of anthocyanins, a subgroup of phenolic compounds. Anthocyanins are an important group of natural pigments that have attracted a lot of attention due to their health benefits. However, the instability and high sensitivity of these pigments have limited their use in food and cosmetics. Therefore, in this study, various modern green extraction methods were used, including solvent extraction, ultrasound-assisted extraction, subcritical water extraction, microwave-assisted extraction (MAE), pulsed electric field extraction, supercritical fluid extraction (SFE), and high hydrostatic pressure-assisted (HHPAE) extraction, to specifically extract and purify anthocyanins. The extraction efficiency, specifically targeting anthocyanins, showed the highest efficiency with HHPAE (81.84%) and the lowest with MAE (40.01%). Measurement of total anthocyanin content revealed that HHPAE and SFE methods yielded the highest anthocyanin concentrations, with 248.49 and 244.98 mg/L, respectively. Identification of anthocyanin by LC-MS revealed that the main anthocyanidins in red onion peel are pelargonidin, cyanidin, delphinidin, and petunidin. These results indicate that innovative green extraction methods, particularly HHPAE and SFE, can effectively replace conventional techniques due to their superior efficiency and enhanced preservation of anthocyanin compounds.
Collapse
Affiliation(s)
- Nasim Mirzazadeh
- Islamic Azad University Pharmaceutical Sciences BranchTehranIran
| | - Hadiseh Bagheri
- Department of Food Science and Technology, Sari BranchIslamic Azad UniversitySariIran
| | - Mehdi Mirzazadeh
- Department of Food Science and Technology, Faculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Somaye Soleimanimehr
- Food and Drug Administration (FDA)Kermanshah University of Medical SciencesKermanshahIran
| | - Fatemeh Rasi
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Sahar Akhavan‐Mahdavi
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| |
Collapse
|
13
|
Ndou DL, Mtolo BP, Khwathisi A, Ndhlala AR, Tavengwa NT, Madala NE. Development of the Pipette-Tip Micro-Solid-Phase Extraction for Extraction of Rutin From Moringa oleifera Lam. Using Activated Hollow Carbon Nanospheres as Sorbents. Int J Anal Chem 2024; 2024:2681595. [PMID: 39371109 PMCID: PMC11452233 DOI: 10.1155/2024/2681595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
Herein, a micro-solid-phase extraction (μSPE) method was developed using a pipette tip for rutin extraction, employing activated hollow carbon nanospheres (HCNSs) as the sorbent. Characterization of the activated carbon nanospheres through TGA, FTIR, and SEM analysis confirmed the success of the activation process. The study demonstrated the efficacy of PT-μSPE in rutin extraction under pH 2 conditions with a standard concentration of 2 mg·L-1. The optimal mass of HCNSs was found to be 2 mg, and a loading volume of 500 μL resulted in the maximum recovery of rutin. Propan-2-ol was the best elution solvent with 15 aspirating/dispensing cycles. The correlation of determination (R 2) for the calibration curve was found to be 0.9991, and the LOD and LOQ values were 0.604 and 1.830 mg·L-1, respectively. The applicability of the method was demonstrated by extracting rutin from a complex Moringa oleifera leaf extract with the relative standard deviation (RSD) of 3.26%, thereby validating this method as feasible for the extraction of useful bioactive compounds from complex plant samples.
Collapse
Affiliation(s)
- Dakalo Lorraine Ndou
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Bonakele Patricia Mtolo
- DSI-NRF Centre of Excellence in Strong MaterialsSchool of ChemistryUniversity of the Witwatersrand, Johannesburg 2050, South Africa
| | - Adivhaho Khwathisi
- Department of BiochemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ashwell Rungano Ndhlala
- Green Biotechnologies Research CentreDepartment of Plant ProductionSoil Science and Agricultural EngineeringUniversity of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Nikita Tawanda Tavengwa
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ntakadzeni Edwin Madala
- Department of BiochemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| |
Collapse
|
14
|
Łyko L, Olech M, Gawlik U, Krajewska A, Kalemba D, Tyśkiewicz K, Piórecki N, Prokopiv A, Nowak R. Rhododendron luteum Sweet Flower Supercritical CO 2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity. Int J Mol Sci 2024; 25:9952. [PMID: 39337440 PMCID: PMC11432528 DOI: 10.3390/ijms25189952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential.
Collapse
Affiliation(s)
- Lena Łyko
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences, ul. Skromna 8, 20-704 Lublin, Poland
| | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Danuta Kalemba
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Katarzyna Tyśkiewicz
- Supercritical Extraction Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, ul. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, ul. Cicha 2A, 35-326 Rzeszow, Poland
| | - Andriy Prokopiv
- Department of Botany, Botanical Garden, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
15
|
Ryszczyńska S, Gumulak-Wołoszyn N, Urbaniak M, Stępień Ł, Bryła M, Twarużek M, Waśkiewicz A. Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis. Molecules 2024; 29:4257. [PMID: 39275104 PMCID: PMC11396850 DOI: 10.3390/molecules29174257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Fungal infections are among the most common diseases of crop plants. Various species of the Fusarium spp. are naturally prevalent and globally cause the qualitative and quantitative losses of farming commodities, mainly cereals, fruits, and vegetables. In addition, Fusarium spp. can synthesize toxic secondary metabolites-mycotoxins under high temperature and humidity conditions. Among the strategies against Fusarium spp. incidence and mycotoxins biosynthesis, the application of biological control, specifically natural plant extracts, has proved to be one of the solutions as an alternative to chemical treatments. Notably, rowanberries taken from Sorbus aucuparia are a rich source of phytochemicals, such as vitamins, carotenoids, flavonoids, and phenolic acids, as well as minerals, including iron, potassium, and magnesium, making them promising candidates for biological control strategies. The study aimed to investigate the effect of rowanberry extracts obtained by supercritical fluid extraction (SFE) under different conditions on the growth of Fusarium (F. culmorum and F. proliferatum) and mycotoxin biosynthesis. The results showed that various extracts had different effects on Fusarium growth as well as ergosterol content and mycotoxin biosynthesis. These findings suggest that rowanberry extracts obtained by the SFE method could be a natural alternative to synthetic fungicides for eradicating Fusarium pathogens in crops, particularly cereal grains. However, more research is necessary to evaluate their efficacy against other Fusarium species and in vivo applications.
Collapse
Affiliation(s)
- Sylwia Ryszczyńska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Natalia Gumulak-Wołoszyn
- Department of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Kraków, Aleja 29 Listopada 46, 31-425 Kraków, Poland
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
16
|
Jiang W, Deng X, Qin L, Jiang D, Lu M, Chen K, Yang M, Zhang L, Jiang J, Lu L. Research on the Cell Wall Breaking and Subcritical Extraction of Astaxanthin from Phaffia rhodozyma. Molecules 2024; 29:4201. [PMID: 39275049 PMCID: PMC11397323 DOI: 10.3390/molecules29174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
This study focused on developing an effective cell wall-breaking method for Phaffia rhodozyma, followed by utilizing subcritical fluid extraction to isolate, extract, and concentrate astaxanthin from the complex fermentation products of P. rhodozyma. A comprehensive comparison of seven distinct methods for disrupting cell walls, including dimethyl sulfoxide treatment, lactic acid treatment, sodium hydroxide treatment, β-glucanase enzymatic digestion, β-mannanase enzymatic digestion, and a combined enzymatic treatment involving both β-mannanase and β-glucanase was conducted. The results identified the lactic acid method as the most effective in disrupting the cell walls of P. rhodozyma. The software, Design Expert, was used in the process of extracting astaxanthin from cell lysates using a subcritical extraction method. Through fitting analysis and response surface optimization analysis by Design Expert, the optimal extraction conditions were determined as follows: an extraction temperature of 41 °C, extraction frequency of two times, and extraction time of 46 min. These parameters facilitated the efficient extraction, concentration, and enrichment of astaxanthin from P. rhodozyma, resulting in an astaxanthin concentration of 540.00 mg/L. This result can establish the foundation for its high-value applications.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Xiangrong Deng
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Lanxian Qin
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Dahai Jiang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Mengqi Lu
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Kai Chen
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Manqi Yang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| | - Jianchun Jiang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Liming Lu
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
17
|
Sun J, Zhan X, Wang W, Yang X, Liu Y, Yang H, Deng J, Yang H. Natural aporphine alkaloids: A comprehensive review of phytochemistry, pharmacokinetics, anticancer activities, and clinical application. J Adv Res 2024; 63:231-253. [PMID: 37935346 PMCID: PMC11380034 DOI: 10.1016/j.jare.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Cancer is the most common cause of death and is still a serious public health problem. Alkaloids, a class of bioactive compounds widely diffused in plants, especially Chinese herbs, are used as functional ingredients, precursors, and lead compounds in food and clinical applications. Among them, aporphine alkaloids (AAs), as an important class of isoquinoline alkaloids, exert a strong anticancer effect on multiple cancer types. AIM OF REVIEW This review aims to comprehensively summarize the phytochemistry, pharmacokinetics, and bioavailability of seven subtypes of AAs and their derivatives from various plants and highlight their anticancer bioactivities and mechanisms of action. Key Scientific Concepts of Review. The chemical structures and botanical diversity of AAs are elucidated, and promising results are highlighted regarding the potent anticancer activities of AAs and their derivatives, contributing to their pharmacological benefits. This work provides a better understanding of AAs and combinational anticancer therapies involving them, thereby improving the development of functional food containing plant-derived AA and the clinical application of AAs.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingtian Zhan
- School of Public Administration and Policy, Renmin University of China, Beijing 100872, China.
| | - Weimin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huanzhi Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
18
|
Gigi AA, Praveena U, Pillai PS, Ragavan KV, Anandharamakrishnan C. Advances and challenges in the fractionation of edible oils and fats through supercritical fluid processing. Compr Rev Food Sci Food Saf 2024; 23:e70017. [PMID: 39289806 DOI: 10.1111/1541-4337.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Petrochemical solvents are widely used for the extraction and fractionation of biomolecules from edible oils and fats at an industrial scale. However, owing to its safety concerns, toxicity, price fluctuations, and sustainability, alternative solvents and technologies have been actively explored in recent years. Technologies, such as ultrasound and microwave-assisted extraction, supercritical carbon dioxide extraction, supercritical fluid fractionation, and sub-critical water extraction, and solvents, like ionic liquids and deep eutectic solvents, are reported for extraction and fractionation of biomolecules. Among them, supercritical carbon dioxide extraction and fractionation are some of the most promising green technologies with the potential to replace petrochemical-based conventional techniques. The addition of cosolvents, such as water, ethanol, and acetone, improves the extraction of amphiphilic and polar compounds from edible oils and fats. Supercritical fluid processing has diverse applications, including concentration of solutes, selective separation of desired molecules, and separation of undesirable compounds from the feed material. Temperature, pressure, particle size, porosity, flow rate, solvent-to-feed ratio, density, viscosity, diffusivity, solubility, partition coefficient, and separation factor are the fundamental factors governing the extraction and fractionation of desired biomolecules from lipids. Supercritical fluids stand alone compared to conventional fluids, because of their tunable solvent properties. Overall, it is to be noted that supercritical fluid-based methods have lots of scope to replace conventional solvent-based methods and progress toward the creation of sustainable food-processing techniques. This review critically evaluates the parameters responsible for the extraction and fractionation of biomolecules from edible oils and fats under supercritical conditions.
Collapse
Affiliation(s)
- A A Gigi
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ug Praveena
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Prasanth S Pillai
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - K V Ragavan
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - C Anandharamakrishnan
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
19
|
Dutertre Q, Guy PA, Sutour S, Peitsch MC, Ivanov NV, Glauser G, von Reuss S. Identification of Granatane Alkaloids from Duboisia myoporoides (Solanaceae) using Molecular Networking and Semisynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1914-1920. [PMID: 39038492 PMCID: PMC11348422 DOI: 10.1021/acs.jnatprod.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The Solanaceae plant family contains at least 98 genera and over 2700 species. The Duboisia genus stands out for its ability to produce pyridine and tropane alkaloids, which are relatively poorly characterized at the phytochemical level. In this study, we analyzed dried leaves of Duboisia spp. using supercritical CO2 extraction and ultra-high-pressure liquid chromatography coupled to high-resolution tandem mass spectrometry, followed by feature-based molecular networking. Thirty-one known tropane alkaloids were putatively annotated, and the identity of six (atropine, scopolamine, anisodamine, aposcopolamine, apoatropine, and noratropine) were identified using reference standards. Two new granatane alkaloids connected in the molecular network were highlighted from Duboisia myoporoides, and their α-granatane tropate and α-granatane isovalerate structures were unambiguously established by semisynthesis.
Collapse
Affiliation(s)
- Quentin Dutertre
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
- Laboratory
of Bioanalytical Chemistry, University of
Neuchâtel, Neuchâtel 2000, Switzerland
| | - Philippe A. Guy
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
| | - Sylvain Sutour
- Neuchâtel
Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Manuel C. Peitsch
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
| | - Nikolai V. Ivanov
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
| | - Gaetan Glauser
- Neuchâtel
Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Stephan von Reuss
- Laboratory
of Bioanalytical Chemistry, University of
Neuchâtel, Neuchâtel 2000, Switzerland
- Neuchâtel
Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Neuchâtel 2000, Switzerland
| |
Collapse
|
20
|
Ribeiro RC, Mota MFS, Silva RMV, Silva DC, Novaes FJM, da Veiga VF, Bizzo HR, Teixeira RSS, Rezende CM. Coffee Oil Extraction Methods: A Review. Foods 2024; 13:2601. [PMID: 39200528 PMCID: PMC11353398 DOI: 10.3390/foods13162601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
Green and roasted coffee oils are products rich in bioactive compounds, such as linoleic acid and the diterpenes cafestol and kahweol, being a potential ingredient for food and cosmetic industries. An overview of oil extraction techniques most applied for coffee beans and their influence on the oil composition is presented. Both green and roasted coffee oil extractions are highlighted. Pressing, Soxhlet, microwave, and supercritical fluid extraction were the most used techniques used for coffee oil extraction. Conventional Soxhlet is most used on a lab scale, while pressing is most used in industry. Supercritical fluid extraction has also been evaluated mainly due to the environmental approach. One of the highlighted activities in Brazilian agribusiness is the industrialization of oils due to their increasing use in the formulation of cosmetics, pharmaceuticals, and foods. Green coffee oil (raw bean) has desirable bioactive compounds, increasing the interest of private companies and research institutions in its extraction process to preserve the properties contained in the oils.
Collapse
Affiliation(s)
- Raquel C. Ribeiro
- Aroma Analysis Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (R.C.R.); (R.M.V.S.)
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Maria Fernanda S. Mota
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21949-909, Brazil;
| | - Rodrigo M. V. Silva
- Aroma Analysis Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (R.C.R.); (R.M.V.S.)
| | - Diana C. Silva
- Chemistry Department, Federal University of Viçosa, Viçosa 36570-900, Brazil; (D.C.S.); (F.J.M.N.)
| | - Fabio J. M. Novaes
- Chemistry Department, Federal University of Viçosa, Viçosa 36570-900, Brazil; (D.C.S.); (F.J.M.N.)
| | - Valdir F. da Veiga
- Chemistry Section, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil;
| | - Humberto R. Bizzo
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, Brazil;
| | - Ricardo S. S. Teixeira
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Claudia M. Rezende
- Aroma Analysis Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (R.C.R.); (R.M.V.S.)
| |
Collapse
|
21
|
Yıldırım M, Erşatır M, Poyraz S, Amangeldinova M, Kudrina NO, Terletskaya NV. Green Extraction of Plant Materials Using Supercritical CO 2: Insights into Methods, Analysis, and Bioactivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2295. [PMID: 39204731 PMCID: PMC11359946 DOI: 10.3390/plants13162295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In recent years, the supercritical CO2 extraction method has gained attention due to its use of environmentally friendly, non-toxic solvents, ability to operate at lower temperatures that do not cause the degradation of bioactive compounds, and capacity for rapid extraction. This method is particularly notable for isolating bioactive compounds from plants. The extracts obtained have shown superior properties due to their activity against diseases such as cancer, which is one of the leading causes of death worldwide. The aim of this study is to provide an in-depth understanding of the supercritical CO2 extraction method, as well as to discuss its advantages and disadvantages. Furthermore, the study includes specific data on various plant materials, detailing the following parameters: plant name and region, bioactive compounds or compound classes, extraction temperature (°C), pressure (bar), time (minutes), co-solvent used, and flow rate. Additionally, this study covers extensive research on the isolation of bioactive compounds and the efficacy of the obtained extracts against cancer.
Collapse
Affiliation(s)
- Metin Yıldırım
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Türkiye
| | - Mehmet Erşatır
- Department of Chemistry, Faculty of Art and Science, Cukurova University, Adana 01330, Türkiye;
| | - Samet Poyraz
- Independent Researcher, Nevşehir 50040, Türkiye;
| | - Madina Amangeldinova
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan; (M.A.); (N.O.K.); (N.V.T.)
- Institute of Genetic and Physiology, Al-Farabi Av., 93, Almaty 050040, Kazakhstan
| | - Nataliya O. Kudrina
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan; (M.A.); (N.O.K.); (N.V.T.)
- Institute of Genetic and Physiology, Al-Farabi Av., 93, Almaty 050040, Kazakhstan
| | - Nina V. Terletskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan; (M.A.); (N.O.K.); (N.V.T.)
- Institute of Genetic and Physiology, Al-Farabi Av., 93, Almaty 050040, Kazakhstan
| |
Collapse
|
22
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Effect of Hemp Extraction Procedures on Cannabinoid and Terpenoid Composition. PLANTS (BASEL, SWITZERLAND) 2024; 13:2222. [PMID: 39204658 PMCID: PMC11359220 DOI: 10.3390/plants13162222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
A variety of techniques have been developed to extract hemp phytochemicals for research and consumption. Some of the most common processes in the industry include supercritical CO2 extraction, hydrodistillation, and solvent-based (ethanol) extractions. Each of these processes has the potential to differentially extract various phytochemicals, which would impact their efficacy, tolerability, and safety. However, despite these differences, there has been no direct comparison of the methods and the resulting phytochemical composition. This work aimed to compare cannabinoid and terpene profiles using the three primary commercial procedures, using hemp inflorescence from a CBD/CBG dominant Cannabis sativa L. cultivar. Extracts were then evaluated for their terpene and cannabinoid content using GC-MS and LC-MS/MS, respectively. Hydrodistilled extracts contained the most variety and abundance of terpenes with β-caryophyllene to be the most concentrated terpene (25-42 mg/g). Supercritical CO2 extracts displayed a minimal variety of terpenes, but the most variety and abundance of cannabinoids with CBD ranging from 12.8-20.6 mg/g. Ethanol extracts contained the most acidic cannabinoids with 3.2-4.1 mg/g of CBDA along with minor terpene levels. The resulting extracts demonstrated substantially different chemical profiles and highlight how the process used to extract hemp can play a large role in product composition and potential biological effects.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA;
| | - Wesley M. Raup-Konsavage
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; (W.M.R.-K.); (K.E.V.)
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; (W.M.R.-K.); (K.E.V.)
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
23
|
Lane MKM, Gilcher EB, Ahrens-Víquez MM, Pontious RS, Wyrtzen NE, Zimmerman JB. Elucidating supercritical fluid extraction of fucoxanthin from algae to enable the integrated biorefinery. BIORESOURCE TECHNOLOGY 2024; 406:131036. [PMID: 38925405 DOI: 10.1016/j.biortech.2024.131036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The emerging nutraceutical, fucoxanthin, shows promise as a high-value product to enable the integrated biorefinery. Fucoxanthin can be extracted from algae through supercritical fluid extraction (SFE), but literature does not agree on optimal extraction conditions. Here, a statistical analysis of literature identifies supercritical carbon dioxide (scCO2) density, ethanol cosolvent amount, and polarity as significant predictors of fucoxanthin yield. Novel SFE experiments are then performed using a fucoxanthin standard, describing its fundamental solubility. These experiments establish solvent system polarity as the key knob to tune fucoxanthin recovery from 0% to 100% and give specific operating conditions for targeted fucoxanthin extraction.Further experiments compare extractions on fucoxanthin standard with extractions from Phaeodactylum tricornutum microalgae to elucidate the effect of the algae matrix. Results show selectivity of fucoxanthin over chlorophyll in scCO2 microalgae extractions that was not seen in extractions with ethanol, indicating a benefit of scCO2 to design selective extraction schemes.
Collapse
Affiliation(s)
- Mary Kate M Lane
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA; Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA
| | - Elise B Gilcher
- Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA; School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Melissa M Ahrens-Víquez
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA
| | - Rachel S Pontious
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA
| | - Nora E Wyrtzen
- Environmental Studies, Yale College, 1 Prospect St, New Haven, CT 06511, USA
| | - Julie B Zimmerman
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA; Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA; School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Pinheiro Pantoja KR, Melo Aires GC, Ferreira CP, de Lima MDC, Menezes EGO, de Carvalho Junior RN. Supercritical Technology as an Efficient Alternative to Cold Pressing for Avocado Oil: A Comparative Approach. Foods 2024; 13:2424. [PMID: 39123615 PMCID: PMC11311359 DOI: 10.3390/foods13152424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Avocado oil is rich in nutrients beneficial to human health, such as monounsaturated fatty acids, phenolic compounds, tocopherol, and carotenoids, with numerous possibilities for application in industry. This review explores, through a comparative approach, the effectiveness of the supercritical oil extraction process as an alternative to the conventional cold-pressing method, evaluating the differences in the extraction process steps through the effect of temperature and operating pressure on bioactive quality and oil yield. The results reveal that supercritical avocado oil has a yield like that of mechanical cold pressing and superior functional and bioactive quality, especially in relation to α-tocopherol and carotenoids. For better use and efficiency of the supercritical technology, the maturation stage, moisture content, fruit variety, and collection period stand out as essential factors to be observed during pre-treatment, as they directly impact oil yield and nutrient concentration. In addition, the use of supercritical technology enables the full use of the fruit, significantly reducing waste, and adds value to the agro-industrial residues of the process. It produces an edible oil free of impurities, microorganisms, and organic solvents. It is a green, environmentally friendly technology with long-term environmental and economic advantages and an interesting alternative in the avocado market.
Collapse
Affiliation(s)
- Kelly Roberta Pinheiro Pantoja
- Program of Post-Graduation in Natural Resources Engineering in the Amazon (PRODERNA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil;
| | - Giselle Cristine Melo Aires
- Program of Post-Graduation in Food Science and Technology (PPGCTA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil;
| | - Clara Prestes Ferreira
- Food Science and Technology Laboratory (LCTEA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil; (C.P.F.); (M.d.C.d.L.)
| | - Matheus da Costa de Lima
- Food Science and Technology Laboratory (LCTEA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil; (C.P.F.); (M.d.C.d.L.)
| | - Eduardo Gama Ortiz Menezes
- Department of Chemical Engineering, Federal Institute of Education, Science and Technology of Rondônia (IFRO), 4985 Calama Avenue, Porto Velho 76820441, RO, Brazil;
| | - Raul Nunes de Carvalho Junior
- Program of Post-Graduation in Food Science and Technology, Program of Post-Graduation in Natural Resources Engineering in the Amazon, Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil
| |
Collapse
|
25
|
Repon MR, Islam T, Paul TK, Jurkonienė S, Haji A, Shukhratov S, Toki GFI. Natural dyes in textile printing: parameters, methods, and performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47552-47583. [PMID: 39034377 DOI: 10.1007/s11356-024-34424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
In recent years, consumer preferences have begun to turn back to natural dyes, whereas synthetic dyes have been pushed into the background over the previous 60 years. This is a result of increased knowledge of the potential hazards associated with the creation of synthetic dyes, which use raw materials derived from petrochemicals and involve intense chemical interactions. Such dyes need a lot of energy to produce, and their negative effects on the environment increase pollution. It has been discovered that several of these dyes, particularly the azo-based ones are carcinogenic. On the contrary, natural dyes are getting more attention from scientists and researchers as a result of their several advantages like being eco-friendly, biodegradable and renewable, sustainable, available in nature, having no disposal problems, minimizing the consumption of fossil fuel, anti-bacterial, insect repellent, and anti-allergic, anti-ultraviolet, intensify dyeing and finishing process efficiency, less expensive, and no adverse effects on human health and environment. However, there are also some drawbacks, like poor fastness properties, natural dye printing for bulk production, difficulties in reproducibility of shades, and so forth. Despite all these limitations, the demand for natural dyes is increasing significantly in textile industries because they offer far more safety than synthetic dyes. This study provides an overall concept of the natural dyes in textile printing. It illustrates parameters of printing performance, methods, and techniques of extraction of natural dyes, printing methods, and printing of natural and synthetic fibers. Finally, this study describes the challenges and future prospects of natural dyes in textile printing.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, 51424, Kaunas, Lithuania.
- Department of Textile Engineering, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Tamal Krishna Paul
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Sigita Jurkonienė
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania
| | - Aminoddin Haji
- Department of Textile Engineering, Yazd University, Yazd, Iran
| | - Sharof Shukhratov
- Department of Technological Education, Fergana State University, 150100, Fergana, Uzbekistan
| | - Gazi Farhan Ishraque Toki
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
26
|
Chammam A, Fillaudeau L, Romdhane M, Bouajila J. Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:1802. [PMID: 38999642 PMCID: PMC11244457 DOI: 10.3390/plants13131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Various parts of the Pinaceae species, a traditional plant, have potential health benefits and exhibit antibacterial, anti-cancer, and antioxidant activities. This study aims to investigate the biochemical properties of both petal (P) and core (C) fractions from pinecones of P. halepensis (PA), P. brutia (PB), and P. pinea (PP). Pinecones were manually separated into P and C, which were then milled to investigate maceration with solvents of increasing polarity: cyclohexane (1SV), ethyl acetate (2SV), and methanol (3SV) at 20 °C. Spectrophotometry was utilized to quantify the total phenolic content (TPC) and to assess bioactivities. Gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) were employed to identify the chemical composition. 3SV extracts demonstrated the highest TPC and a significant anti-oxidant potential. PA-P-3SV exhibited the highest TPC (460.66 mg GAE/g DW) and PP-P-3SV displayed the best IC50 (10.54 µg/mL) against DPPH. 1SV and 2SV extracts showed interesting anticancer activity against Hela and HepG2 cells. No significant toxic effect of P and C extracts from pinecones was observed on HEK-293 cells. GC-MS analysis unveiled 46 volatile compounds, of which 32 were detected for the first time in these species. HPLC analysis identified 38 compounds, of which 27 were not previously detected in these species. This study highlights the significant potential of pinecones as a rich source of bioactive compounds.
Collapse
Affiliation(s)
- Amel Chammam
- Toulouse Biotechnology Institute, Bio & Chemical Engineering TBI (CNRS UMR5504, INRAE UMR792, INSA Toulouse), 31400 Toulouse, France; (A.C.); (L.F.)
- Energy, Water, Environment and Process Laboratory (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia;
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France
| | - Luc Fillaudeau
- Toulouse Biotechnology Institute, Bio & Chemical Engineering TBI (CNRS UMR5504, INRAE UMR792, INSA Toulouse), 31400 Toulouse, France; (A.C.); (L.F.)
| | - Mehrez Romdhane
- Energy, Water, Environment and Process Laboratory (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia;
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France
| |
Collapse
|
27
|
Jiménez Bolaño DC, Insuasty D, Rodríguez Macías JD, Grande-Tovar CD. Potential Use of Tomato Peel, a Rich Source of Lycopene, for Cancer Treatment. Molecules 2024; 29:3079. [PMID: 38999031 PMCID: PMC11243680 DOI: 10.3390/molecules29133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Tomatoes are well known for their impressive nutritional value among vegetables. However, the industrial processing of tomatoes generates a significant amount of waste. Specifically, 10% to 18% of the raw materials used in tomato processing become waste. This waste can seriously affect ecosystems, such as freshwater bodies, wetlands, rivers, and other natural environments, if not properly managed. Interestingly, tomato waste, specifically the skin, contains lycopene, a potent antioxidant and antimutagenic that offers a range of health benefits. This makes it a valuable ingredient in industries such as food and cosmetics. In addition, researchers are exploring the potential of lycopene in the treatment of various types of cancer. This systematic review, guided by the PRISMA 2020 methodology, examined studies exploring the possibility of tomato peel as a source of lycopene and carotenoids for cancer treatment. The findings suggest that tomato peel extracts exhibit promising anticancer properties, underscoring the need for further investigation of possible therapeutic applications. The compiled literature reveals significant potential for using tomato peel to create new cancer treatments, which could potentially revolutionize the field of oncology. This underscores the importance of continued research and exploration, emphasizing the urgency and importance of the scientific community's contribution to this promising area of study.
Collapse
Affiliation(s)
- Diana Carolina Jiménez Bolaño
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Juan David Rodríguez Macías
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
28
|
Nayak N, Bhujle RR, Nanje-Gowda N, Chakraborty S, Siliveru K, Subbiah J, Brennan C. Advances in the novel and green-assisted techniques for extraction of bioactive compounds from millets: A comprehensive review. Heliyon 2024; 10:e30921. [PMID: 38784533 PMCID: PMC11112340 DOI: 10.1016/j.heliyon.2024.e30921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Millets are rich in nutritional and bioactive compounds, including polyphenols and flavonoids, and have the potential to combat malnutrition and various diseases. However, extracting these bioactive compounds can be challenging, as conventional methods are energy-intensive and can lead to thermal degradation. Green-assisted techniques have emerged as promising methods for sustainable and efficient extraction. This review explores recent trends in employing green-assisted techniques for extracting bioactive compounds from millets, and potential applications in the food and pharmaceutical industries. The objective is to evaluate and comprehend the parameters involved in different extraction methods, including energy efficiency, extraction yield, and the preservation of compound quality. The potential synergies achieved by integrating multiple extraction methods, and optimizing extraction efficiency for millet applications are also discussed. Among several, Ultrasound and Microwave-assisted extraction stand out for their rapidity, although there is a need for further research in the context of minor millets. Enzyme-assisted extraction, with its low energy input and ability to handle complex matrices, holds significant potential. Pulsed electric field-assisted extraction, despite being a non-thermal approach, requires further optimization for millet-specific applications, are few highlights. The review emphasizes the importance of considering specific compound characteristics, extraction efficiency, purity requirements, and operational costs when selecting an ideal technique. Ongoing research aims to optimize novel extraction processes for millets and their byproducts, offering promising applications in the development of millet-based nutraceutical food products. Therefore, the current study benefits researchers and industries to advance extraction research and develop efficient, sustainable, and scalable techniques to extract bioactive compounds from millets.
Collapse
Affiliation(s)
- Nidhi Nayak
- Department of Food Technology, Jain Deemed-to-be University, Bangalore, Karnataka, India
| | - Rohan Rajendraji Bhujle
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - N.A. Nanje-Gowda
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Snehasis Chakraborty
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Department of Food Engineering & Technology, Institute of Chemical Technology, Mumbai, India
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Charles Brennan
- STEM College, Royal Melbourne Institute of Technology, Melbourne, Australia
| |
Collapse
|
29
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
30
|
Rauf A, Ibrahim M, Alomar TS, AlMasoud N, Khalil AA, Khan M, Khalid A, Jan MS, Formanowicz D, Quradha MM. Hypoglycemic, anti-inflammatory, and neuroprotective potentials of crude methanolic extract from Acacia nilotica L. - results of an in vitro study. Food Sci Nutr 2024; 12:3483-3491. [PMID: 38726429 PMCID: PMC11077208 DOI: 10.1002/fsn3.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 05/12/2024] Open
Abstract
Acacia nilotica L., also known as babul, belonging to the Fabaceae family and the Acacia genus, is typically used for ornamental purposes and also as a medicinal plant found in tropical and subtropical areas. This plant is a rich source of bioactive compounds. The current study aimed to elucidate the hypoglycemic, anti-inflammatory, and neuroprotective potential of A. nilotica's crude methanolic extract. The results of the in vitro antidiabetic assay revealed that methanolic extract of A. nilotica inhibited the enzyme α-glucosidase (IC50: 33 μg mL-1) and α-amylase (IC50: 17 μg mL-1) in a dose-dependent manner. While in the anticholinesterase enzyme inhibitory assay, maximum inhibition was shown by the extract against acetylcholinesterase (AChE) (637.01 μg mL-1) and butyrylcholinesterase (BChE) (491.98 μg mL-1), with the highest percent inhibition of 67.54% and 71.50% at 1000 μg mL-1, respectively. This inhibitory potential was lower as compared to the standard drug Galantamine that exhibited 82.43 and 89.50% inhibition at the same concentration, respectively. Moreover, the methanolic extract of A. nilotica also significantly inhibited the activities of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) in a concentration-dependent manner. The percent inhibitory activity of 5-LOX and COX-2 ranged from 42.47% to 71.53% and 43.48% to 75.22%, respectively. Furthermore, in silico, in vivo, and clinical investigations must be planned to validate the above-stated bioactivities of A. nilotica.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Muhammad Ibrahim
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Taghrid S. Alomar
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health SciencesRiphah International UniversityLahorePakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muhammad Saeed Jan
- Department of PharmacyBacha Khan UniversityCharsaddaKhyber PakhtunkhwaPakistan
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory MedicinePoznan University of Medical SciencesPoznanPoland
| | - Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunHadhramawtYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| |
Collapse
|
31
|
Sadeghi A, Rajabiyan A, Nabizade N, Meygoli Nezhad N, Zarei-Ahmady A. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. Int J Biol Macromol 2024; 266:131147. [PMID: 38537857 DOI: 10.1016/j.ijbiomac.2024.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Rajabiyan
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nafise Nabizade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Najme Meygoli Nezhad
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amanollah Zarei-Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
32
|
Hernández-Reyes A, Guzmán-Albores JM, De León-Rodríguez A, Ruíz-Valdiviezo VM, Rodríguez-Ortiz LR, Barba-de la Rosa AP. Toxicological and Sedative Effects of Chipilin ( Crotalaria longirostrata) Leaf Extracts Obtained by Maceration and Supercritical Fluid Extraction. ACS OMEGA 2024; 9:18862-18871. [PMID: 38708243 PMCID: PMC11064181 DOI: 10.1021/acsomega.3c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Chipilin (Crotalaria longirostrata) is consumed as a vegetable in the preparation of traditional dishes. As a folk medicine, Chipilin extracts are used as a hypnotic and sedative agent; however, there are few reports that support these uses. This study aimed to characterize the compounds present in Chipilin leaf extracts and to investigate their sedative effect using zebrafish as an in vivo model. Extracts were obtained by maceration with water (H2O), ethanol (EtOH), and EtOH-H2O, while oleoresin was obtained by supercritical fluid extraction (SFE). Total phenolic and flavonoid contents were quantified by colorimetric methods. Phytochemical constituents were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The chronic and acute toxicities of Chipilin extracts were tested in zebrafish embryos and larvae, respectively. Chipilin sedative effect was tested by the larvae response to dark-light-dark transitions. EtOH-H2O extracts had the highest value of total phenolics (5345 ± 5.1 μg GAE/g), followed by water and oleoresin (1815 ± 5.1 and 394 ± 5.1 μg GAE/g, respectively). In water extracts were identified the alkaloid trachelanthamidine, 1,2β-epoxy- and the alkyl ketone 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, while oleamide, α-monostearin, and erucamide were detected in all samples except in water extracts. Oleoresin extract had the lowest embryotoxicity (LC50 = 4.99 μg/mL) and the highest sedative effects. SFE is a green alternative to obtain Chipilin extracts rich in erucamide, an endocannabinoid analogue, which plays an important role in the development of the central nervous system and in modulating neurotransmitter release.
Collapse
Affiliation(s)
- Adaía Hernández-Reyes
- IPICYT,
Instituto Potosino de Investigación Científica y Tecnológica
A.C., Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, México
| | | | - Antonio De León-Rodríguez
- IPICYT,
Instituto Potosino de Investigación Científica y Tecnológica
A.C., Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, México
| | - Víctor Manuel Ruíz-Valdiviezo
- Instituto
Tecnológico de México-Instituto Tecnológico de
Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Col. Juan Crispin, Tuxtla Gutiérrez, Chiapas 29050, México
| | - Luis Roberto Rodríguez-Ortiz
- Investigadores
por México, Departamento de Neurobiología Molecular
y Celular, Instituto de Neurobiología,
UNAM, Campus Juriquilla, Querétaro, Qro. 76230, México
| | - Ana Paulina Barba-de la Rosa
- IPICYT,
Instituto Potosino de Investigación Científica y Tecnológica
A.C., Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, México
| |
Collapse
|
33
|
Qiu J, Zheng P, Dai W, Zheng Z, Lin X, Hu J, Zeng S, Lin S. Steam Explosion-Assisted Extraction of Polysaccharides from Pleurotus eryngii and Its Influence on Structural Characteristics and Antioxidant Activity. Foods 2024; 13:1229. [PMID: 38672901 PMCID: PMC11049414 DOI: 10.3390/foods13081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Pleurotus eryngii (PE) has been sought after for its various health benefits and high content of phenolic compounds. This study explored the feasibility of steam explosion (SE)-assisted extraction of polysaccharides with high antioxidant capacities from PE. An orthogonal experimental design (OED) was used to optimize the SE-assisted extraction of PE. The influence of the optimized SE-assisted extraction on the physicochemical properties of PE polysaccharides was determined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), monosaccharide compositional analysis and antioxidant capacity assays. Under optimal SE conditions, SE-assisted extraction increased the polysaccharide yield by 138% compared to extraction without SE-assistance. In addition, SEM demonstrated that SE-assisted extraction markedly altered the spatial structure of Pleurotus eryngii polysaccharides (PEP), and monosaccharide compositional analysis revealed that this pretreatment significantly increased the proportions of some monosaccharides, such as glucose, rhamnose and arabinose, in the isolated PEP. FTIR spectra indicated no change in the major chemical functional groups of PEP. PEP extracted by SE-assisted extraction had significantly increased free radical scavenging and antioxidant capacities. In conclusion, SE-assisted extraction appears to be a novel polysaccharide extraction technology, which markedly increases extraction yields and efficiency and can increase the biological activity of polysaccharide extracts.
Collapse
Affiliation(s)
- Jianqing Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Peiying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
| | - Wanzhen Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
| | - Zhijun Zheng
- Fujian Subtropical Fruit Beverage Engineering Research Center, Zhangzhou 363000, China; (Z.Z.); (X.L.)
| | - Xiaohui Lin
- Fujian Subtropical Fruit Beverage Engineering Research Center, Zhangzhou 363000, China; (Z.Z.); (X.L.)
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
34
|
Lei J, Yang J, Bao C, Lu F, Wu Q, Wu Z, Lv H, Zhou Y, Liu Y, Zhu N, Yu Y, Zhang Z, Hu M, Lin L. Isorhamnetin: what is the in vitro evidence for its antitumor potential and beyond? Front Pharmacol 2024; 15:1309178. [PMID: 38650631 PMCID: PMC11033395 DOI: 10.3389/fphar.2024.1309178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Isorhamnetin (ISO) is a phenolic compound belonging to flavonoid family, showcasing important in vitro pharmacological activities such as antitumor, anti-inflammation, and organ protection. ISO is predominantly extracted from Hippophae rhamnoides L. This plant is well-known in China and abroad because of its "medicinal and food homologous" characteristics. As a noteworthy natural drug candidate, ISO has received considerable attention in recent years owing to its low cost, wide availability, high efficacy, low toxicity, and minimal side effects. To comprehensively elucidate the multiple biological functions of ISO, particularly its antitumor activities and other pharmacological potentials, a literature search was conducted using electronic databases including Web of Science, PubMed, Google Scholar, and Scopus. This review primarily focuses on ISO's ethnopharmacology. By synthesizing the advancements made in existing research, it is found that the general effects of ISO involve a series of in vitro potentials, such as antitumor, protection of cardiovascular and cerebrovascular, anti-inflammation, antioxidant, and more. This review illustrates ISO's antitumor and other pharmacological potentials, providing a theoretical basis for further research and new drug development of ISO.
Collapse
Affiliation(s)
- Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jianbao Yang
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Cuiyu Bao
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorder, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feifei Lu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Wu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zihan Wu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hong Lv
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhipeng Zhang
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
35
|
Žagar T, Frlan R, Kočevar Glavač N. Using Subcritical Water to Obtain Polyphenol-Rich Extracts with Antimicrobial Properties. Antibiotics (Basel) 2024; 13:334. [PMID: 38667010 PMCID: PMC11047479 DOI: 10.3390/antibiotics13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
The use of green extraction methods that meet the criteria of sustainable and environmentally friendly technologies has been increasing in recent decades due to their many benefits. In this respect, extracts obtained using subcritical water are also gaining increased attention because of their potential antioxidant and antimicrobial properties. Their antimicrobial activity is mainly due to the presence of various polyphenolic compounds. Although the exact mechanism of the antibacterial action of polyphenolic compounds has not yet been fully investigated and described, polyphenols are known to affect the bacterial cell at several cellular levels; among other things, they cause changes and ruptures in the cell membranes of the bacterial cell, affect the inactivation of bacterial enzymes and damage bacterial DNA. The difference in the strength of the antimicrobial activity of the extracts is most likely a result of differences in their lipophilicity and in the number and position of hydroxyl groups and double bonds in the chemical structure of polyphenols. By changing the extraction conditions, especially the temperature, during subcritical water extraction, we affect the solubility of the compounds we want to extract. In general, as the temperature increases, the solubility of polyphenolic compounds also increases, and the reduction of the surface tension of subcritical water at higher temperatures also enables faster dissolution of polyphenolic compounds. Different bacterial strains have different sensitivity to different extracts. However, extracts obtained with subcritical water extraction demonstrate strong antimicrobial activity compared to extracts obtained with conventional methods.
Collapse
Affiliation(s)
- Tjaša Žagar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Rok Frlan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
36
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
37
|
Bermúdez-Bazán M, Estarrón-Espinosa M, Castillo-Herrera GA, Escobedo-Reyes A, Urias-Silvas JE, Lugo-Cervantes E, Gschaedler-Mathis A. Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization. Molecules 2024; 29:1137. [PMID: 38474649 DOI: 10.3390/molecules29051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The leaves of Agave angustifolia Haw. are the main agro-waste generated by the mezcal industry and are becoming an important source of bioactive compounds, such as phenolic compounds, that could be used in the food and pharmaceutical industries. Therefore, the extraction and identification of these phytochemicals would revalorize these leaf by-products. Herein, maceration and supercritical carbon dioxide (scCO2) extractions were optimized to maximize the phenolic and flavonoid contents and the antioxidant capacity of vegetal extracts of A. angustifolia Haw. In the maceration process, the optimal extraction condition was a water-ethanol mixture (63:37% v/v), which yielded a total phenolic and flavonoid content of 27.92 ± 0.90 mg EAG/g DL and 12.85 ± 0.53 µg QE/g DL, respectively, and an antioxidant capacity of 32.67 ± 0.91 (ABTS assay), 17.30 ± 0.36 (DPPH assay), and 13.92 ± 0.78 (FRAP assay) µM TE/g DL. Using supercritical extraction, the optimal conditions for polyphenol recovery were 60 °C, 320 bar, and 10% v/v. It was also observed that lower proportions of cosolvent decreased the polyphenol extraction more than pressure and temperature. In both optimized extracts, a total of 29 glycosylated flavonoid derivatives were identified using LC-ESI-QTof/MS. In addition, another eight novel compounds were identified in the supercritical extracts, showing the efficiency of the cosolvent for recovering new flavonoid derivatives.
Collapse
Affiliation(s)
- Misael Bermúdez-Bazán
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Mirna Estarrón-Espinosa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Gustavo Adolfo Castillo-Herrera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Antonio Escobedo-Reyes
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analíticos y Metrológicos, Av. Normalistas No. 800, Guadalajara 44270, Jalisco, Mexico
| | - Judith Esmeralda Urias-Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Eugenia Lugo-Cervantes
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| | - Anne Gschaedler-Mathis
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
38
|
Morón-Ortiz Á, Mapelli-Brahm P, Meléndez-Martínez AJ. Sustainable Green Extraction of Carotenoid Pigments: Innovative Technologies and Bio-Based Solvents. Antioxidants (Basel) 2024; 13:239. [PMID: 38397837 PMCID: PMC10886214 DOI: 10.3390/antiox13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Carotenoids are ubiquitous and versatile isoprenoid compounds. The intake of foods rich in these pigments is often associated with health benefits, attributable to the provitamin A activity of some of them and different mechanisms. The importance of carotenoids and their derivatives for the production of foods and health-promotion through the diet is beyond doubt. In the new circular economy paradigm, the recovery of carotenoids in the biorefinery process is highly desirable, for which greener processes and solvents are being advocated for, considering the many studies being conducted at the laboratory scale. This review summarizes information on different extraction technologies (ultrasound, microwaves, pulsed electric fields, pressurized liquid extraction, sub- and supercritical fluid extraction, and enzyme-assisted extraction) and green solvents (ethyl lactate, 2-methyltetrahydrofuran, natural deep eutectic solvents, and ionic liquids), which are potential substitutes for more toxic and less environmentally friendly solvents. Additionally, it discusses the results of the latest studies on the sustainable green extraction of carotenoids. The conclusions drawn from the review indicate that while laboratory results are often promising, the scalability to real industrial scenarios poses a significant challenge. Furthermore, incorporating life cycle assessment analyses is crucial for a comprehensive evaluation of the sustainability of innovative extraction processes compared to industry-standard methods.
Collapse
Affiliation(s)
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.M.-O.); (A.J.M.-M.)
| | | |
Collapse
|
39
|
Wang L, Zhou W, Liu C, Chen P, Zhou L. Study on the accumulation pattern of anthocyanins, sugars and organic acids in medicinal Vitis vinifera 'SuoSuo' during ripening. Food Chem 2024; 433:137294. [PMID: 37659294 DOI: 10.1016/j.foodchem.2023.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
In this study, targeted metabolomics technology was used to accurately and quantitatively analyze the metabolic pathways of anthocyanin, sugars and organic acid metabolites during the ripening of 'SuoSuo' grape berries. Results, 33, 10 and 36 metabolites of anthocyanins, sugars and organic acids, respectively, were detected. The anthocyanin with the highest content was cyanidin-3-O-glucoside (136.343 ng/g), which reached a maximum at 135 days after full bloom. The highest fructose content in sugar was 167.69 ng/g (135 days after full bloom). Among the organic acids, tartaric acid exhibited the highest content (37,196.67 mg/kg, 105 days after full bloom). The content of oleanolic acid (230.064 mg/kg, 135 days after full bloom) was higher in organic acids. These results clarify how anthocyanin, sugar and organic acid metabolites accumulate and change as 'SuoSuo' grapes ripen and provide a reference for the development and utilization of 'SuoSuo'.
Collapse
Affiliation(s)
- Lingzhe Wang
- Research Centre of Characteristic Fruit Tree, College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Weiquan Zhou
- Research Centre of Characteristic Fruit Tree, College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chunyan Liu
- Research Centre of Characteristic Fruit Tree, College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Pengfei Chen
- Research Centre of Characteristic Fruit Tree, College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Long Zhou
- Research Centre of Characteristic Fruit Tree, College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China.
| |
Collapse
|
40
|
Gopalaiah SB, Jayaseelan K. Analytical Strategies to Investigate Molecular Signaling, Proteomics, Extraction and Quantification of Withanolides - A Comprehensive Review. Crit Rev Anal Chem 2024:1-25. [PMID: 38300174 DOI: 10.1080/10408347.2024.2307887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Withanolides are the class of steroidal molecules getting greater emphasis in recent years. Quality control throughout the manufacturing and storage period is often one of the key problems that have restricted their broad use in India's indigenous and Ayurvedic medical systems for thousands of years. Because of their diverse clinical potential, withanolides have received a great deal of scientific attention. Analytical techniques are being devised for the automated isolation, identification, and estimation of every single protein within the cell as well as in herbal extracts of withanolides, due to which now researchers are interested in determining the effects of metabolism as well as various stimuli on protein expression, which made the study easier. This study discusses the potential use of hyphenated analytical methods that are reliable in understanding the molecular signaling features, proteome evaluation and characterization of withanolides, in addition to examining existing methodological limitations. The choice of analytical techniques for the withanolides analysis, however, relies on the nature of the sample matrix, the aim of the analysis, and the sensitivity of the technique.
Collapse
Affiliation(s)
- Sinchana B Gopalaiah
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kavitha Jayaseelan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
41
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
42
|
Li W, Yuan H, Liu Y, Wang B, Xu X, Xu X, Hussain D, Ma L, Chen D. Current analytical strategies for the determination of resveratrol in foods. Food Chem 2024; 431:137182. [PMID: 37603999 DOI: 10.1016/j.foodchem.2023.137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Resveratrol, a non-flavonoid polyphenolic compound, possesses various beneficial properties such as anti-cancer, anti-aging, anti-bacterial, and antioxidant effects. It is naturally produced by many plants in response to stimulation. However, the content of resveratrol in natural plants can vary significantly, ranging from micrograms to milligrams per kilogram. As the demand for resveratrol increases, the development of methods for extracting and quantifying resveratrol in food has become a rapidly growing field in recent years. This review aims to comprehensively summarize the progress made in resveratrol analysis in food over the past decade (2012-2022), with a specific focus on the latest advancements in extraction and detection technologies. The objective is to offer a valuable reference for further research and utilization of resveratrol in various food applications.
Collapse
Affiliation(s)
- Wenxuan Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Liu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Lei Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
43
|
Sabah Hassan E, Rahman H, Hamasalih Omer S. Sub-chronic Toxicity Study of Heracleum lasiopetalum Extract Towards Healthy Sprague Dawley Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144209. [PMID: 39830659 PMCID: PMC11742374 DOI: 10.5812/ijpr-144209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 01/22/2025]
Abstract
Background Heracleum species are commonly used as spices, flavorings, and food additives. Members of the genus Heracleum offer many medicinal benefits but may also pose adverse effects on human health. Objectives To prepare a crude leaf extract of Heracleum lasiopetalum and assess its toxicity profile towards healthy rats. Methods The H. lasiopetalum leaf extract was prepared using pure methanol and ethyl acetate (1:10) at room temperature over a period of 72 hours. After filtration, the crude extract was obtained using a rotary evaporator at 40 - 45°C. Subsequently, various doses of the H. lasiopetalum extract were administered orally to healthy Sprague Dawley rats at three doses (300, 600, and 900 mg/kg body weight) for four weeks to test for toxicity. Blood samples were examined for hematologic and biochemical changes, while the liver, kidneys, and heart were examined for histopathological changes. Results The toxicity study revealed no mortality at low and medium doses, as well as no clinical toxicity indicators. Additionally, there were no significant alterations observed in the haematological, biochemical, and histopathological profiles of the treated animals throughout the 28-day experiment. However, at high doses, the mortality rate was significantly elevated, accompanied by notable histopathological changes. Conclusions Continuous administration of high doses of H. lasiopetaum may induce potential toxic effects in the treated animals.
Collapse
Affiliation(s)
- Enas Sabah Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Republic of Iraq
| | - Heshu Rahman
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaymaniyah, Republic of Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Republic of Iraq
| | - Shirwan Hamasalih Omer
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaymaniyah, Republic of Iraq
| |
Collapse
|
44
|
|
45
|
Li G, Chen D. Comparison of different extraction methods of active ingredients of Chinese medicine and natural products. J Sep Sci 2024; 47:e2300712. [PMID: 38234023 DOI: 10.1002/jssc.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Like other traditional medicine in the world, Chinese traditional medicine (CTM) has a long history, which is a treasure of the combination of medicine and Chinese classical culture even more than 5000 years. For thousands of years, CTM has made great contributions to the reproduction and health of the Chinese people. It was an efficient therapeutic tool under the guidance of Chinese traditional medical theory, its source is generally natural products, but there are also a small number of it are natural products after some processing methods. In fact, the definition of Chinese medicine (CM) includes both traditional and new CM developed by modern technology. It is well known that the chemical composition of most CM and natural products is very complex, for example, a single herb may contain hundreds of different chemicals, including active ingredients, side effects, and even toxic ingredients. Therefore, the extraction process is particularly crucial for the quality and clinical efficacy of CM and natural products. In this work, a new classification method was proposed to divide the extraction technologies of CM and natural products into 21 kinds in recent years and analyze their status, advantages, and disadvantages. Then put forward a new technical route based on ultra-high-pressure extraction technology for rapid extraction else while removing harmful impurities and making higher utilization of CM and natural products. It is a useful exploration for the extraction industry of medicinal materials and natural products in the world.
Collapse
Affiliation(s)
- Geyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
46
|
Mottola S, De Marco I. Supercritical Antisolvent Precipitation of Corticosteroids/β-Cyclodextrin Inclusion Complexes. Polymers (Basel) 2023; 16:29. [PMID: 38201694 PMCID: PMC10780522 DOI: 10.3390/polym16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, corticosteroid-β-cyclodextrin (β-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a carrier led to their almost complete extraction (the small amount of obtained material precipitates in the form of crystals). The coprecipitation of the ingredients in the presence of β-CD was investigated at different concentrations, pressures, and molar ratios. For both the corticosteroids, the optimized operating conditions were 40 °C, 120 bar, an equimolar ratio, and a concentration in DMSO of 20 mg/mL; these conditions led to the attainment of microparticles with mean diameters equal to 0.197 ± 0.180 μm and 0.131 ± 0.070 μm in the case of DEX and PRED, respectively. Job's method confirmed the formation of inclusion complexes with a 1/1 mol/mol ratio. Compared to the pure ingredients, the obtained powders have an improved release rate, which is about three times faster in both cases. The release curves obtained under the best operating conditions were fitted using different models. The best fitting was obtained using the Weibull model, whose parameters are compatible with a combined release mechanism involving Fickian diffusion and controlled release.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
47
|
Boateng ID. Recent advances incombined Avant-garde technologies (thermal-thermal, non-thermal-non-thermal, and thermal-non-thermal matrix) to extract polyphenols from agro byproducts. J Food Drug Anal 2023; 31:552-582. [PMID: 38526817 PMCID: PMC10962677 DOI: 10.38212/2224-6614.3479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 03/27/2024] Open
Abstract
Because food byproducts (waste) are rich in phytoconstituents, valorizing them is crucial for global food security. However, conventional extraction (CE), including decoction, maceration, Soxhlet, etc., for agro byproducts' polyphenol extraction are time-consuming and rely significantly on vast volumes of potentially aggressive solvents. Hence, Avantgarde extraction technologies, including non-thermal (high hydrostatic pressure (HHPE), pulsed-electric field (PEF), high voltage electrical discharges (HVED), etc.) and thermal extraction (supercritical fluid (SCF), subcritical water extraction (SWE), microwave-assisted extraction (MAE), etc.), as well as their thermal combinations (SCF-PLE, SCCO2-SWE, SCCO2-MAE, etc.), non-thermal combinations (HHPE + UAE, PEF + UAE, HVED + UAE, etc.) and combined thermalnon-thermal (MAE-UAE, etc.) are increasingly replacing CE. However, a review of combined Avant-garde extraction escalation technologies (non-thermal/thermal extraction matrix) for extracting polyphenols from agro-byproducts is limited. Hence, this manuscript reviewed Avant-garde extraction technologies (non-thermal/thermal extraction matrix) for extracting phenolics from agro-byproducts in the last 5 years. The key factors affecting polyphenols' extraction from the byproduct, the recent applications of Avant-garde technologies, and their principle were reviewed using databases from Web of Science and Lens.org. The results demonstrated that combined Avant-garde extraction escalation technologies increase extractability, resulting in polyphenols with higher extraction rates, fewer contaminants, and preservation of thermosensitive components. Therefore, combined Avant-garde extraction technologies should be explored over the next five years. Implementing an integrated process and the strategic sequencing of diverse Avant-garde extraction technologies are important. Thus, further investigation is required to explore the sequencing process and its potential impact on the extraction of phenolics from agro-byproducts.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, 65211,
USA
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX, 78216,
USA
- Kumasi Cheshire Home, Off Edwenase Road, Kumasi,
Ghana
- Organization of African Academic Doctors, PO Box 25305-00100, Nairobi,
Kenya
| |
Collapse
|
48
|
Moradi-Sadr J, Ebadi MT, Ayyari M. Steps to achieve carvone-rich spearmint ( Mentha spicata L.) essential oil: a case study on the use of different distillation methods. FRONTIERS IN PLANT SCIENCE 2023; 14:1292224. [PMID: 38107005 PMCID: PMC10722908 DOI: 10.3389/fpls.2023.1292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
Introduction Spearmint essential oil is a valuable medical and food product. Spearmint essential oil is effective for the treatment of flatulence, indigestion, nausea, and colic along with Alzheimer, obesity, and fungal infections. Methods This study evaluated the quality and quantity of spearmint essential oil by examining some extraction strategies. The procedures were hydro-distillation, hydro-steam distillation, microwave-assisted hydro-distillation, and open hydro-distillation. The hydro-distillation had five pH levels (2, 4, 6, 8, and 10) and four NaCl concentrations (0.5, 1, 1.5, and 2%). microwave-assisted hydro-distillation at a power of 225 W was applied for 60, 90, and 120 minutes for process durations. The solvent extraction of herbal distillate obtained by an open hydro-distillation system was done using n-pentane and n-hexane to achieve a recovered essential oil by a rotary evaporator. Results and discussion The results showed that the lowest pH in the hydro-distillation process led to obtaining double yield compared to the control. Additionally, at 1 and 1.5% NaCl concentrations, the oil yield increased by 12.86 and 20.87%, respectively. Although the yield was reduced by microwave-assisted hydro-distillation, however within 120 minutes, carvone increased by 12.7% and limonene decreased by 42.3%. The best quality of spearmint oil belonged to solvent extraction followed by rotary evaporator.
Collapse
|
49
|
Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, Rashid A, Xu B, Liang Q, Ma H, Ren X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. ULTRASONICS SONOCHEMISTRY 2023; 101:106646. [PMID: 37862945 PMCID: PMC10594638 DOI: 10.1016/j.ultsonch.2023.106646] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
The increasing focus on health and well-being has sparked a rising interest in bioactive components in the food, pharmaceutical, and nutraceutical industries. These components are gaining popularity due to their potential benefits for overall health. The growing interest has resulted in a continuous rise in demand for bioactive components, leading to the exploration of both edible and non-edible sources to obtain these valuable substances. Traditional extraction methods like solvent extraction, distillation, and pressing have certain drawbacks, including lower extraction efficiency, reduced yield, and the use of significant amounts of solvents or resources. Furthermore, certain extraction methods necessitate high temperatures, which can adversely affect certain bioactive components. Consequently, researchers are exploring non-thermal technologies to develop environmentally friendly and efficient extraction methods. Ultrasonic-assisted extraction (UAE) is recognized as an environmentally friendly and highly efficient extraction technology. The UAE has the potential to minimize or eliminate the need for organic solvents, thereby reducing its impact on the environment. Additionally, UAE has been found to significantly enhance the production of target bioactive components, making it an attractive method in the industry. The emergence of ultrasonic assisted extraction equipment (UAEE) has presented novel opportunities for research in chemistry, biology, pharmaceuticals, food, and other related fields. However, there is still a need for further investigation into the main components and working modes of UAEE, as current understanding in this area remains limited. Therefore, additional research and exploration are necessary to enhance our knowledge and optimize the application of UAEE. The core aim of this review is to gain a comprehensive understanding of the principles, benefits and impact on bioactive components of UAE, explore the different types of equipment used in this technique, examine the various working modes and control parameters employed in UAE, and provide a detailed overview of the blending of UAE with other emerging extraction technologies. In conclusion, the future development of UAEE is envisioned to focus on achieving increased efficiency, reduced costs, enhanced safety, and improved reliability. These key areas of advancement aim to optimize the performance and practicality of UAEE, making it a more efficient, cost-effective, and reliable extraction technology.
Collapse
Affiliation(s)
- Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixiu Pang
- Zhongke Zhigu International Pharmaceutical Biotechnology (Guangdong) Co., Ltd, Guikeng Village, Chuangxing Avenue, Gaoxin District, Qingyuan, Guangdong 511538, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
50
|
Salama MF, Mahmoud KF, Amin AA, Abd El- Rahman NM, Seliem EI. The Influence of green extraction methods on the municipal onion extracts nano-capsules and their application in beef burger. FOOD AND HUMANITY 2023; 1:471-481. [DOI: 10.1016/j.foohum.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|