1
|
Fang Y, Guo Z, Zhou L, Zhang J, Li H, Hao J. Pim1 inactivating induces RUNX3 upregulation that improves/alleviates airway inflammation and mucus hypersecretion in vitro and in vivo. BMJ Open Respir Res 2024; 11:e002066. [PMID: 39521608 PMCID: PMC11552021 DOI: 10.1136/bmjresp-2023-002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Our research aimed to evaluate whether proto-oncogene serine/threonine-protein kinase Pim-1 (Pim1) inactivation could attenuate asthma by promoting runt-related transcription factor 3 (Runx3) expression and explore the underlying molecular mechanism. METHOD Phorbol 12-myristate 13-acetate (PMA, 50 nM) was used to induce inflammation in BEAS-2B human airway epithelial cells. ELISA and immunofluorescence double staining confirmed inflammation modelling and differential expression of Pim1 and Runx3. Pim1 inhibitor (SGI-1776) and Runx3 siRNA (siRunx3) were used in this study. Apoptosis, inflammation, MUC5AC protein expression, Pim1 kinase and Runx3 protein expression, and PI3K/AKT/nuclear factor-κB (NF-κB) pathway-associated protein expression were also assessed by flow cytometry, immunofluorescence and western blot. The effects of Pim1 inactivation on airway inflammation, pathological injury and mucus secretion in wild-type and Runx3 knockout mice were observed by in vivo experiments. RESULTS The results of the in vitro experiments showed that PMA stimulation causes BEAS-2B cell apoptosis and promotes the MUC5AC expression. In addition, PMA stimulation activated the PI3K/AKT/NF-κB pathway. SGI-1776 treatment partially reversed these effects, whereas siRunx3 attenuated the effects of SGI-1776 on PMA-stimulated BEAS-2B cells. In vivo experiments showed that in Runx3-KO asthmatic mice, inhibition of Pim1 kinase had less effect on airway inflammation, pathological injury and mucus secretion. Meanwhile, Pim1 kinase expression was higher in Runx3-KO asthmatic mice than in wild-type asthmatic mice. Furthermore, inhibition of Pim1 kinase inhibited activation of the PI3K/AKT/NF-κB pathway, whereas these effects were attenuated in Runx3-KO mice. CONCLUSION Our results suggest that Pim1 inactivation can ameliorate airway inflammation and mucus hypersecretion through upregulation of Runx3 and the effect could be mediated through modulation of the PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Yanni Fang
- Department of Pediatrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Zhen Guo
- Department of Pediatrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Lanzhi Zhou
- Department of Pediatrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Juan Zhang
- Department of Pediatrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Haiyan Li
- Department of Pediatrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Jumei Hao
- Department of Pediatrics, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
2
|
Wu C, Zhang R, Wang J, Chen Y, Zhu W, Yi X, Wang Y, Wang L, Liu P, Li P. Dioscorea nipponica Makino: A comprehensive review of its chemical composition and pharmacology on chronic kidney disease. Biomed Pharmacother 2023; 167:115508. [PMID: 37716118 DOI: 10.1016/j.biopha.2023.115508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a widespread ailment that significantly impacts global health. It is characterized by high prevalence, poor prognosis, and substantial healthcare costs, making it a major public health concern. The current clinical treatments for CKD are not entirely satisfactory, leading to a high demand for alternative therapeutic options. Chinese herbal medicine, with its long history, diverse varieties, and proven efficacy, offers a promising avenue for exploration. One such Chinese herbal medicine, Dioscorea nipponica Makino (DNM), is frequently used to treat kidney diseases. In this review, we have compiled studies examining the mechanisms of action of DNM in the context of CKD, focusing on five primary areas: improvement of oxidative stress, inhibition of renal fibrosis, regulation of metabolism, reduction of inflammatory response, and regulation of autophagy.
Collapse
Affiliation(s)
- Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiang Yi
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
3
|
Liu QH, Zhang YD, Ma ZW, Qian ZM, Jiang ZH, Zhang W, Wang L. Fractional extraction and structural characterization of glycogen particles from the whole cultivated caterpillar fungus Ophiocordyceps sinensis. Int J Biol Macromol 2023; 229:507-514. [PMID: 36603712 DOI: 10.1016/j.ijbiomac.2022.12.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Ophiocordyceps sinensis (syn. Cordyceps sinensis) is a valuable medicinal fungus in traditional Chinese medicine, and one or more polysaccharides are the key constituents with important medical effects. Glycogen as a functional polysaccharide is widely identified in eukaryotes including fungi. However, there is no definitive report of glycogen presence in O. sinensis. In this study, we carefully fractionated polysaccharides from cultivated caterpillar fungus O. sinensis, which were then characterized via methods for glycogen analysis. According to the results, 1.03 ± 0.43 % of polysaccharides were quantified via amyloglucosidase digestion in the whole cultivated caterpillar fungus, which had a typical spherical shape under transmission electron microscope with an average peak radius of 37.63 ± 0.57 nm via size exclusion chromatography and an average chain length of 12.47 ± 0.94 degree of polymerization via fluorophore-assisted capillary electrophoresis. Taken together, this study confirmed that the polysaccharides extracted form O. sinensis were mostly glycogen.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau
| | - Yu-Dong Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhang-Wen Ma
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zheng-Ming Qian
- Dongguan East Sunshine Cordyceps Sinensis Research and Development Company, Dongguan, Guangdong Province, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Zhang J, Wang N, Chen W, Zhang W, Zhang H, Yu H, Yi Y. Integrated metabolomics and transcriptomics reveal metabolites difference between wild and cultivated Ophiocordyceps sinensis. Food Res Int 2023; 163:112275. [PMID: 36596185 DOI: 10.1016/j.foodres.2022.112275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Ophiocordyceps sinensis is a traditional medicinal fungus endemic to the alpine and high-altitude areas of the Qinghai-Tibet plateau. The scarcity of the wild resource has led to increased attention to artificially cultivated O. sinensis. However, little is known about the metabolic differences and the regulatory mechanisms between cultivated and wild O. sinensis. This study exploited untargeted metabolomics and transcriptomics to uncover the differences in accumulated metabolites and expressed genes between wild and cultivated O. sinensis. Metabolomics results revealed that 368 differentially accumulated metabolites were mainly enriched in biosynthesis of amino acids, biosynthesis of plant secondary metabolites and purine nucleotide metabolism. Cultivated O. sinensis contained more amino acids and derivatives, carbohydrates and derivatives, and phenolic acids than wild O. sinensis, whereas the contents of most nucleosides and nucleotides in wild O. sinensis were significantly higher than in cultivated O. sinensis. Transcriptome analysis indicated that 4430 annotated differentially expressed genes were identified between two types. Integrated metabolomics and transcriptomics analyses suggested that IMPDH, AK, ADSS, guaA and GUK genes might be related to the synthesis of purine nucleotides and nucleosides. Our findings will provide a new insight into the molecular basis of metabolic variations of this medicinal fungus.
Collapse
Affiliation(s)
- Jianshuang Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Na Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wanxuan Chen
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Weiping Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Haoshen Zhang
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hao Yu
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| | - Yin Yi
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
5
|
Extraction, Characterization, and Platelet Inhibitory Effects of Two Polysaccharides from the Cs-4 Fungus. Int J Mol Sci 2022; 23:ijms232012608. [PMID: 36293463 PMCID: PMC9604242 DOI: 10.3390/ijms232012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular diseases are associated with platelet hyperactivity, and downregulating platelet activation is one of the promising antithrombotic strategies. This study newly extracted two polysaccharides (purified exopolysaccharides, EPSp and purified intercellular exopolysaccharides, IPSp) from Cordyceps sinensis Cs-4 mycelial fermentation powder, and investigated the effects of the two polysaccharides and their gut bacterial metabolites on platelet functions and thrombus formation. EPSp and IPSp are majorly composed of galactose, mannose, glucose, and arabinose. Both EPSp and IPSp mainly contain 4-Galp and 4-Glcp glycosidic linkages. EPSp and IPSp significantly inhibited human platelet activation and aggregation with a dose-dependent manner, and attenuated thrombus formation in mice without increasing bleeding risk. Furthermore, the EPSp and IPSp after fecal fermentation showed enhanced platelet inhibitory effects. The results have demonstrated the potential value of Cs-4 polysaccharides as novel protective ingredients for cardiovascular diseases.
Collapse
|
6
|
Toy HI, Yildiz AB, Tasdemir Kahraman D, Ilhan S, Dikensoy O, Bayram H. Capsaicin suppresses ciliary function, while inducing permeability in bronchial epithelial cell cultures of COPD patients. Front Pharmacol 2022; 13:996046. [PMID: 36278231 PMCID: PMC9582664 DOI: 10.3389/fphar.2022.996046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Take Home Message: Capsaicin modified inflammatory response and caused toxicity in bronchial epithelial cultures from patients with COPD. More importantly, capsaicin decreased ciliary beat frequency and induced epithelial permeability and these effects were partially prevented by formoterol and roflumilast. Tear gas is widely used to halt mass demonstrations. Studies have reported its adverse effects on multiple organ systems; however, its effect on individuals with chronic respiratory diseases and the underlying mechanisms of these effects are unclear. For the first time in the literature, we investigated the effects of capsaicin, the active ingredient of tear gas, on bronchial epithelial cell (BEC) cultures obtained from well-characterized groups of nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). BEC cultures were incubated with 50-500 μM capsaicin in the absence and presence of formoterol (1μM) and roflumilast (0.1 μM) for 24 h. Ciliary beat frequency (CBF) and transepithelial electrical resistance (TEER) were assessed at T1/4, T1/2, T1, T2, T4, T6, and T24 h, whereas the release of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-8, and lactate dehydrogenase (LDH) was measured at T24 h. Capsaicin (250 µM) significantly decreased CBF of all BEC cultures from T1/4 h to T24 h (p<0.05). Formoterol significantly prevented decreases in CBF induced by capsaicin. Higher concentrations of capsaicin (250-500 μM) significantly reduced TEER of BECs from nonsmokers (T2-T24 h), smokers (T24 h) and COPD patients (T2 and T24 h), which was partially prevented by roflumilast. Capsaicin (500 μM) decreased release of IL-8 (p<0.0001) and GM-CSF (p<0.05) while inducing release of LDH in BECs (p<0.05), and this was more prominent in BEC from patients with COPD. In conclusion, our findings demonstrate that capsaicin can suppress ciliary activity and cytokine release from BECs, induce BEC culture permeability and cellular toxicity and that these effects can be partially prevented by formoterol and roflumilast.
Collapse
Affiliation(s)
- Halil Ibrahim Toy
- Gaziantep University School of Medicine, Respiratory Research Laboratory, Gaziantep, Türkiye
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Türkiye
- Department of Epidemiology and Cancer Control, St. Jude Childrens Research Hospital, Memphis, TN, United States
| | | | - Demet Tasdemir Kahraman
- Gaziantep University School of Medicine, Respiratory Research Laboratory, Gaziantep, Türkiye
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Türkiye
| | - Sedat Ilhan
- Gaziantep University School of Medicine, Respiratory Research Laboratory, Gaziantep, Türkiye
- Gaziantep University, Institute of Health Sciences, Department of Respiratory Biology, Gaziantep, Türkiye
| | - Oner Dikensoy
- Department of Chest Diseases, Gaziantep University School of Medicine, Gaziantep, Türkiye
| | - Hasan Bayram
- Gaziantep University School of Medicine, Respiratory Research Laboratory, Gaziantep, Türkiye
- Department of Chest Diseases, Gaziantep University School of Medicine, Gaziantep, Türkiye
- Department of Pulmonary Medicine, Koc University School of Medicine, Istanbul, Türkiye
- Koc University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Türkiye
- *Correspondence: Hasan Bayram,
| |
Collapse
|
7
|
Wang W, Xu L, Zhou L, Wan S, Jiang L. Dioscorea nipponica Makino Relieves Ovalbumin-Induced Asthma in Mice through Regulating RKIP-Mediated Raf-1/MEK/MAPK/ERK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8077058. [PMID: 35757465 PMCID: PMC9217531 DOI: 10.1155/2022/8077058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Purpose Dioscorea nipponica Makino (DNM) is a traditional herb with multiple medicinal functions. This study is aimed at exploring the therapeutic effects of DNM on asthma and the underlying mechanisms involving RKIP-mediated MAPK signaling pathway. Methods An ovalbumin-induced asthma model was established in mice, which was further administrated with DNM and/or locostatin (RKIP inhibitor). ELISA was performed to detect the serum titers of OVA-IgE and OVA-IgG1, bronchoalveolar lavage fluid (BALF) levels of inflammation-related biomarkers, and tissue levels of oxidative stress-related biomarkers. The expression of RKIP was measured by quantitative real-time PCR, Western blot, immunohistochemistry, and immunofluorescence. HE staining was used to observe the pathological morphology of lung tissues. The protein expression of MAPK pathway-related proteins was detected by Western blot. Results Compared with the controls, the model mice exhibited significantly higher serum titers of OVA-IgE and OVA-IgG1, BALF levels of IL-6, IL-8, IL-13, TGF-β1, and MCP-1, tissue levels of MDA and ROS, lower BALF levels of IL-10 and IFN-γ, and tissue level of GSH. DNM relieved the allergic inflammatory response and oxidative stress in the model mice. DNM also recovered the downregulation of RKIP and the pathological injury of lung tissues in asthma mice. In addition, the Raf-1/MEK/MAPK/ERK pathway in the model mice was blocked by DNM. Silencing of RKIP by locostatin weakened the relieving effects of DNM on asthma through activating the Raf-1/MEK/MAPK/ERK pathway. Conclusion DNM relieves asthma via blocking the Raf-1/MEK/MAPK/ERK pathway that mediated by RKIP upregulation.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Lingming Zhou
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shanhong Wan
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Libin Jiang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| |
Collapse
|
8
|
A model to predict a risk of allergic rhinitis based on mitochondrial DNA copy number. Eur Arch Otorhinolaryngol 2022; 279:4997-5008. [DOI: 10.1007/s00405-022-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
|
9
|
Li J, Raghav P, Hu C. Ajwain oil attenuates allergic response of ovalbumin-induced allergic rhinitis via alteration of inflammatory, oxidative stress, and Th1/Th2 responses. J Food Biochem 2021; 45:e13963. [PMID: 34708419 DOI: 10.1111/jfbc.13963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is an immune inflammatory-related disorder that affects the nasal mucosa. Free radicals play a crucial role in the expansion of allergic reaction and the researcher used the antioxidant therapy to treat the disease. Trachyspermum ammi L. (Ajwain oil) is popular traditional medicine. It has been proved their potential effect on various diseases. Ajwain oil showed anti-tumor, antioxidant, antidiabetic, anti-inflammatory, and anti-bacterial properties. Yet, the anti-allergic effect of Ajwain oil is still not explored. In this experimental study, an ovalbumin (OVX)-induced AR model was used to scrutinize the anti-allergic, antioxidant and anti-inflammatory effects of Ajwain oil. MATERIALS AND METHODS OVX was used to establish the AR model (sensitization days 1, 8, and 15) and given the oral treatment of Ajwain oil and Montelukast for 13 days. The spleen, lungs, and body weight were estimated. Sneezing, nasal discharge and rubbing are also estimated. Immunoglobin-E (IgE), histamine, malondialdehyde (MDA), superoxide dismutase (SOD), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and inflammatory cytokines were scrutinized. RESULTS Ajwain oil significantly (p < .001) suppressed sneezing, nasal discharge and nasal rubbing along with increasing the spleen, lung and body weight. Ajwain oil significantly (p < .001) decreased the level of IgE, histamine, MDA, Nrf2, HO-1, and increased the level of SOD. Ajwain oil significantly (p < .001) suppressed the number of eosinophils, neutrophils, macrophages, and epithelial cells. Ajwain oil significantly prevented the activation of the NF-κBp65 and STAT3 signaling pathways that led to enhancing the synthesis of anti-inflammatory cytokines and reducing the inflammatory, allergen-specific type 2T helper cells (Th2), Th17 cytokines. CONCLUSION The obtained data suggests that Ajwain oil has a promising anti-allergic against allergic rhinitis in mice via anti-allergic, antioxidant, and anti-inflammatory effects. PRACTICAL APPLICATIONS Allergic rhinitis is a serious life-threatening disease. Inflammatory reaction plays an important role in the expansion of AR diseases. Ajwain oil considerably increased the spleen weight and reduced lung weight. Ajwain oil suppressed the nasal rubbing, sneezing, and nasal discharge. Ajwain oil considerably suppressed the immunoglobin and inflammatory cytokines. The result suggests that Ajwain oil having the potential effect against the allergic rhinitis.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Otolaryngology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Prashant Raghav
- Department of Pharmacy, Dharamveer Singh Rajput Memorial College of Pharmacy, Moradabad, India
| | - Chunyan Hu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Luo Y, Chen H, Huang R, Wu Q, Li Y, He Y. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-κB signals in OVA-induced asthmatic mice. Pulm Pharmacol Ther 2021; 69:102049. [PMID: 34102301 DOI: 10.1016/j.pupt.2021.102049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/30/2021] [Indexed: 02/05/2023]
Abstract
Asthma is one of the most common respiratory diseases. Lack of response or poor adherence to corticosteroids demands the development of new drug candidates for asthma. Endogenous nucleosides could be potential options since uridine has been reported to have an anti-inflammatory effect in asthma model. However, its molecular pathways and whether other nucleosides have similar therapeutic effects remain untouched. Thus, we herein report our investigation into the anti-inflammatory effects of guanosine and uridine, and the related inner signaling pathways in asthma model. Present study shows that administration of guanosine or uridine can reduce lung inflammation in OVA-challenged mice. Total cell counts in BALF, cytokines such as IL-4, IL-6, IL-13, OVA-specific IgE and mRNA level of Cxcl1, Cxlc3, IL-17 and Muc5ac were decreased in asthmatic mice after treatment. Besides, the production of IL-6 in LPS/IFN-γ induced THP-1 cells was also decreased by both nucleosides. In vivo and in vitro expressions of key molecules in the MAPK and NF-κB pathways were reduced after the treatment of both compounds. These findings suggest that guanosine has a similar potential therapeutic value in asthma as uridine and they exert anti-inflammatory effects through suppression of the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Yujiao Luo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Qiong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
11
|
Leung HY, Yan CTM, Ko KM. Antioxidant and Immunopotentiating Effects of <i>Cordyceps </i> Mycelium Extract, Chicken Essence, and Their Combination in Experimental Models. Chin Med 2021. [DOI: 10.4236/cm.2021.121001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|