1
|
Singh S, Sharma H, Kumar V, Gupta G, Patel S, Patel A, Dua K, Kumar Singh S. Method development and validation on RP-HPLC method for estimation of xanthohumol in nanostructured lipid carriers drug delivery systems. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124437. [PMID: 39753015 DOI: 10.1016/j.jchromb.2024.124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025]
Abstract
Xanthohumol(Xn) is isolated from female inflorescences of Humulus lupulus. It has been discovered that Xn and its formulation are useful in the treatment of cancer. As this bioactive compound has medicinal importance, hence, a novel, precise, and sensitive HPLC method should be developed. In the present study, an RP-HPLC method has been developed and validated as per ICH Q2(R1) guidelines using column C18 having particle size 5 µm and dimension 250 × 4.6 mm. The detection wavelength (λ) used was 370 nm. The mobile phase consisted of a combination of HPLC grade Methanol and HPLC grade water buffer at a ratio of 95:5 v/v, with a flow rate of 1.0 mL/min. The total run time was 10 min with Xn retention time (Rt) at 4.5 min. The calibration plot was found linear in the range 2-10 μg/mL. The recovery of 97.65 % indicated good accuracy of method. The method's precision is within 2 % of acceptable limits. LOD and LOQ values of 0.85 and 2.6 μg/mL indicated good sensitivity of method. The uniqueness of the research work is relying on achieving peak of Xn at lesser retention time as compared to existing methods. Further the results of specificity studies revealed absence of any interference of Xn peak with the excipients used in the nanostructured lipid carriers (NLCs). Overall, the study provided an accurate, precise, sensitive and specific method to quantify Xn in bulk and NLCs.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Himani Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
2
|
Chlipała P, Matera A, Sordon S, Popłoński J, Mazur M, Janeczko T. Enzymatic Glycosylation of 4'-Hydroxychalcones: Expanding the Scope of Nature's Catalytic Potential. Int J Mol Sci 2024; 25:11482. [PMID: 39519035 PMCID: PMC11546794 DOI: 10.3390/ijms252111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Chalcones, including 4'-hydroxychalcones, have garnered significant attention in the area of drug discovery due to their diverse pharmacological properties, such as anti-inflammatory, antioxidative, and anticancer effects. However, their low water solubility and bioavailability limit their efficacy in vivo. Glycosylation presents a promising approach to enhance the water solubility, stability, and metabolic properties of chalcones. This study investigates the enzymatic glycosylation of eight chemically synthesized 4'-hydroxychalcones using a diverse set of sugar glucosyltransferases from bacterial, plant, and fungal sources, alongside Glycine max sucrose synthase (GmSuSy) in a cascade reaction. Among the tested enzymes, five exhibited a remarkable versatility for glycoside production, and for large-scale biotransformation, flavonoid 7-O-glucosyltransferase Sbaic7OGT from Scutellaria baicalensis was selected as the most effective. As a result of the experiments conducted, eight trans-chalcone glycosides were obtained. During the purification of the reaction products, we also observed the isomerization of the products by simple sunlight exposure, which resulted in eight additional cis-chalcone glycosides. This study highlights the novel use of a cascade reaction involving Glycine max sucrose synthase (GmSuSy) for the efficient glycosylation of trans-4'-hydroxychalcones, alongside the unexpected discovery of cis-chalcone glycosides during the purification process.
Collapse
Affiliation(s)
- Paweł Chlipała
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.M.); (S.S.); (J.P.); (M.M.)
| | | | | | | | | | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.M.); (S.S.); (J.P.); (M.M.)
| |
Collapse
|
3
|
Ebbert L, von Montfort C, Wenzel CK, Reichert AS, Stahl W, Brenneisen P. A Combination of Cardamonin and Doxorubicin Selectively Affect Cell Viability of Melanoma Cells: An In Vitro Study. Antioxidants (Basel) 2024; 13:864. [PMID: 39061932 PMCID: PMC11274308 DOI: 10.3390/antiox13070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Treatment of the most aggressive and deadliest form of skin cancer, the malignant melanoma, still has room for improvement. Its invasive nature and ability to rapidly metastasize and to develop resistance to standard treatment often result in a poor prognosis. While the highly effective standard chemotherapeutic agent doxorubicin (DOX) is widely used in a variety of cancers, systemic side effects still limit therapy. Especially, DOX-induced cardiotoxicity remains a big challenge. In contrast, the natural chalcone cardamonin (CD) has been shown to selectively kill tumor cells. Besides its anti-tumor activity, CD exhibits anti-oxidative, anti-inflammatory and anti-bacterial properties. In this study, we investigated the effect of the combinational treatment of DOX with CD on A375 melanoma cells compared to normal human dermal fibroblasts (NHDF) and rat cardiac myoblasts (H9C2 cells). DOX-induced cytotoxicity was unselective and affected all cell types, especially H9C2 cardiac myoblasts, demonstrating its cardiotoxic effect. In contrast, CD only decreased the cell viability of A375 melanoma cells, without harming normal (healthy) cells. The addition of CD selectively protected human dermal fibroblasts and rat cardiac myoblasts from DOX-induced cytotoxicity. While no apoptosis was induced by the combinational treatment in normal (healthy) cells, an apoptosis-mediated cytotoxicity was demonstrated in A375 melanoma cells. CD exhibited thiol reactivity as it was able to directly interact with N-acetylcysteine (NAC) in a cell-free assay and to induce heme oxygenase-1 (HO-1) in all cell types. And that took place in a reactive oxygen species (ROS)-independent manner. DOX decreased the mitochondrial membrane potential (Δψm) in all cell types, whereas CD selectively decreased mitochondrial respiration, affecting basal respiration, maximal respiration, spare respiratory capacity and ATP production in A375 melanoma cells, but not in healthy cardiac myoblasts. The DOX-induced cytotoxicity seen in melanoma cells was ROS-independent, whereas the cytotoxic effect of CD was associated with CD-induced ROS-formation and/or its thiol reactivity. This study highlights the beneficial properties of the addition of CD to DOX treatment, which might protect patients from DOX-induced cardiotoxicity. Future experiments with other tumor cell lines or a mouse model should substantiate this hypothesis.
Collapse
Affiliation(s)
- Lara Ebbert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany (C.-K.W.)
| | | | | | | | | | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany (C.-K.W.)
| |
Collapse
|
4
|
Chlipała P, Tronina T, Dymarska M, Urbaniak M, Kozłowska E, Stępień Ł, Kostrzewa-Susłow E, Janeczko T. Multienzymatic biotransformation of flavokawain B by entomopathogenic filamentous fungi: structural modifications and pharmacological predictions. Microb Cell Fact 2024; 23:65. [PMID: 38402203 PMCID: PMC10893614 DOI: 10.1186/s12934-024-02338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Flavokawain B is one of the naturally occurring chalcones in the kava plant (Piper methysticum). It exhibits anticancer, anti-inflammatory and antimalarial properties. Due to its therapeutic potential, flavokawain B holds promise for the treatment of many diseases. However, due to its poor bioavailability and low aqueous solubility, its application remains limited. The attachment of a sugar unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Biotransformation is an environmentally friendly way to improve the properties of compounds, for example, to increase their hydrophilicity and thus affect their bioavailability. Recent studies proved that entomopathogenic filamentous fungi from the genera Isaria and Beauveria can perform O-methylglycosylation of hydroxyflavonoids or O-demethylation and hydroxylation of selected chalcones and flavones. RESULTS In the present study, we examined the ability of entomopathogenic filamentous fungal strains of Beauveria bassiana, Beauveria caledonica, Isaria farinosa, Isaria fumosorosea, and Isaria tenuipes to transform flavokawain B into its glycosylated derivatives. The main process occurring during the reaction is O-demethylation and/or hydroxylation followed by 4-O-methylglycosylation. The substrate used was characterized by low susceptibility to transformations compared to our previously described transformations of flavones and chalcones in the cultures of the tested strains. However, in the culture of the B. bassiana KCh J1.5 and BBT, Metarhizium robertsii MU4, and I. tenuipes MU35, the expected methylglycosides were obtained with high yields. Cheminformatic analyses indicated altered physicochemical and pharmacokinetic properties in the derivatives compared to flavokawain B. Pharmacological predictions suggested potential anticarcinogenic activity, caspase 3 stimulation, and antileishmanial effects. CONCLUSIONS In summary, the study provided valuable insights into the enzymatic transformations of flavokawain B by entomopathogenic filamentous fungi, elucidating the structural modifications and predicting potential pharmacological activities of the obtained derivatives. The findings contribute to the understanding of the biocatalytic capabilities of these microbial cultures and the potential therapeutic applications of the modified flavokawain B derivatives.
Collapse
Affiliation(s)
- Paweł Chlipała
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland.
| | - Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Monika Urbaniak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Strzeszyńska 34, 60-479, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Strzeszyńska 34, 60-479, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland.
| |
Collapse
|
5
|
Efimova SS, Malykhina AI, Ostroumova OS. Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals. MEMBRANES 2023; 13:670. [PMID: 37505036 PMCID: PMC10384262 DOI: 10.3390/membranes13070670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to treat systemic mycoses due to its wide antifungal activity and low probability of developing resistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially resolved by lowering therapeutic AmB concentration while maintaining efficacy. This work discusses the possibility of using plant polyphenols and alkaloids to enhance the pore-forming and consequently antifungal activity of AmB. We demonstrated that phloretin, phlorizin, naringenin, taxifolin, quercetin, biochanin A, genistein, resveratrol, and quinine led to an increase in the integral AmB-induced transmembrane current in the bilayers composed of palmitoyloleoylphosphocholine and ergosterol, while catechin, colchicine, and dihydrocapsaicin did not practically change the AmB activity. Cardamonin, 4'-hydroxychalcone, licochalcone A, butein, curcumin, and piperine inhibited AmB-induced transmembrane current. Absorbance spectroscopy revealed no changes in AmB membrane concentration with phloretin addition. A possible explanation of the potentiation is related to the phytochemical-produced changes in the elastic membrane properties and the decrease in the energy of formation of the lipid mouth of AmB pores, which is partially confirmed by differential scanning microcalorimetry. The possibility of AmB interaction with cholesterol in the mammalian cell membranes instead of ergosterol in fungal membranes, determines its high toxicity. The replacement of ergosterol with cholesterol in the membrane lipid composition led to a complete loss or a significant decrease in the potentiating effects of tested phytochemicals, indicating low potential toxicity of these compounds and high therapeutic potential of their combinations with the antibiotic. The discovered combinations of AmB with plant molecules that enhance its pore-forming ability in ergosterol-enriched membranes, seem to be promising for further drug development in terms of the toxicity decrease and efficacy improvement.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Anna I Malykhina
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
6
|
Budziak-Wieczorek I, Kamiński D, Skrzypek A, Ciołek A, Skrzypek T, Janik-Zabrotowicz E, Arczewska M. Naturally Occurring Chalcones with Aggregation-Induced Emission Enhancement Characteristics. Molecules 2023; 28:molecules28083412. [PMID: 37110646 PMCID: PMC10146426 DOI: 10.3390/molecules28083412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, the natural chalcones: 2'-hydroxy-4,4',6'-trimethoxychalcone (HCH), cardamonin (CA), xanthohumol (XN), isobavachalcone (IBC) and licochalcone A (LIC) are studied using spectroscopic techniques such as UV-vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and single-crystal X-ray diffraction (XRD). For the first time, the spectroscopic and structural features of naturally occurring chalcones with varying numbers and positions of hydroxyl groups in rings A and B were investigated to prove the presence of the aggregation-induced emission enhancement (AIEE) effect. The fluorescence studies were carried out in the aggregate form in a solution and in a solid state. As to the results of spectroscopic analyses conducted in the solvent media, the selected mixtures (CH3OH:H2O and CH3OH:ethylene glycol), as well as the fluorescence quantum yield (ϕF) and SEM, confirmed that two of the tested chalcones (CA and HCH) exhibited effective AIEE behaviour. On the other hand, LIC showed a large fluorescence quantum yield and Stokes shift in the polar solvents and in the solid state. Moreover, all studied compounds were tested for their promising antioxidant activities via the utilisation of 1,1- diphenyl-2-picrylhydrazyl as a free-radical scavenging reagent as well as potential anti-neurodegenerative agents via their ability to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. Finally, the results demonstrated that licochalcone A, with the most desirable emission properties, showed the most effective antioxidant (DPPH IC50 29%) and neuroprotective properties (AChE IC50 23.41 ± 0.02 μM, BuChE IC50 42.28 ± 0.06 μM). The substitution pattern and the biological assay findings establish some relation between photophysical properties and biological activity that might apply in designing AIEE molecules with the specified characteristics for biological application.
Collapse
Affiliation(s)
- Iwona Budziak-Wieczorek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Daniel Kamiński
- Institute of Chemical Sciences, Maria Curie-Skłodowska University, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Alicja Skrzypek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Anna Ciołek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Ewa Janik-Zabrotowicz
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
7
|
Anokwuru CP, Sandasi M, Chen W, van Vuuren S, Elisha IL, Combrinck S, Viljoen AM. Investigating antimicrobial compounds in South African Combretaceae species using a biochemometric approach. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113681. [PMID: 33307052 DOI: 10.1016/j.jep.2020.113681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many species within the family Combretaceae are popular medicinal plants that are used traditionally to treat various conditions, of which many are related to bacterial infections. Global concerns regarding the increasing resistance of pathogens towards currently available antibiotics have encouraged researchers to find new drugs with antibacterial activity, particularly from plant sources. AIM OF THE STUDY This study was aimed at exploring the broad-spectrum antibacterial potential of methanol extracts of species representing four genera of Combretaceae (Combretum, Pteleopsis, Quisqualis, Terminalia), indigenous to South Africa, using a biochemometric approach. MATERIALS AND METHODS The microdilution assay was used to determine the antibacterial activities, measured as minimum inhibitory concentrations (MICs), of the 51 methanol extracts representing 35 Combretaceae species, against nine species of pathogenic bacteria. Integrative biochemometric analysis was performed, thereby correlating the MIC values with the metabolomic data obtained from ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models were constructed for six pathogens displaying variation in their susceptibility towards the extracts. RESULTS Evaluation of the overall MIC values obtained indicated that extracts of species from the four genera displayed the highest activity towards Bacillus cereus ATCC 11778 (average MIC 0.52 mg/mL) and Salmonella typhimurium ATCC 14028 (average MIC 0.63 mg/mL). These bacteria were the most sensitive Gram-positive and Gram-negative bacteria, respectively. Extracts from Combretum acutifolium, Combretum imberbe and Combretum elaeagnoides were the most active, with average MIC values of 0.70 mg/mL, 0.52 mg/mL and 0.45 mg/mL, respectively. Five triterpenoid compounds were tentatively identified as biomarkers from the biochemometric analysis. CONCLUSION Correlation of the phytochemistry of species from four genera in the Combretaceae family with antibacterial activity revealed that triterpenoids are responsible for the broad-spectrum antibacterial activity observed.
Collapse
Affiliation(s)
- Chinedu P Anokwuru
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drug Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - Ishaku L Elisha
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drug Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|