1
|
Firrman J, Narrowe A, Liu L, Mahalak K, Lemons J, Van den Abbeele P, Baudot A, Deyaert S, Li Y, Yao Y, Yu L. Tomato seed extract promotes health of the gut microbiota and demonstrates a potential new way to valorize tomato waste. PLoS One 2024; 19:e0301381. [PMID: 38625903 PMCID: PMC11020900 DOI: 10.1371/journal.pone.0301381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
The current effort to valorize waste byproducts to increase sustainability and reduce agricultural loss has stimulated interest in potential utilization of waste components as health-promoting supplements. Tomato seeds are often discarded in tomato pomace, a byproduct of tomato processing, yet these seeds are known to contain an array of compounds with biological activity and prebiotic potential. Here, extract from tomato seeds (TSE), acquired from pomace, was evaluated for their ability to effect changes on the gut microbiota using an ex vivo strategy. The results found that TSE significantly increased levels of the beneficial taxa Bifidobacteriaceae in a donor-independent manner, from a range of 18.6-24.0% to 27.0-51.6% relative abundance following treatment, yet the specific strain of Bifidobacteriaceae enhanced was inter-individually variable. These structural changes corresponded with a significant increase in total short-chain fatty acids, specifically acetate and propionate, from an average of 13.3 to 22.8 mmol/L and 4.6 to 7.4 mmol/L, respectively. Together, these results demonstrated that TSE has prebiotic potential by shaping the gut microbiota in a donor-independent manner that may be beneficial to human health. These findings provide a novel application for TSE harvested from tomato pomace and demonstrate the potential to further valorize tomato waste products.
Collapse
Affiliation(s)
- Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Adrienne Narrowe
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - LinShu Liu
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Karley Mahalak
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Johanna Lemons
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | | | | | | | - Yanfang Li
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Yuanhang Yao
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Liangli Yu
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
2
|
Mateo-Roque P, Morales-Camacho JI, Jara-Romero GJ, Rosas-Cárdenas FDF, Huerta-González L, Luna-Suárez S. Supercritical CO 2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds. Foods 2024; 13:1045. [PMID: 38611350 PMCID: PMC11011313 DOI: 10.3390/foods13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Tomato seeds are a rich source of protein that can be utilized for various industrial food purposes. This study delves into the effects of using supercritical CO2 (scCO2) on the structure and techno-functional properties of proteins extracted from defatted tomato seeds. The defatted meal was obtained using hexane (TSMH) and scCO2 (TSMC), and proteins were extracted using water (PEWH and PEWC) and saline solution (PESH and PESC). The results showed that scCO2 treatment significantly improved the techno-functional properties of protein extracts, such as oil-holding capacity and foaming capacity (especially for PEWC). Moreover, emulsifying capacity and stability were enhanced for PEWC and PESC, ranging between 4.8 and 46.7% and 11.3 and 96.3%, respectively. This was made possible by the changes in helix structure content induced by scCO2 treatment, which increased for PEWC (5.2%) and decreased for PESC (8.0%). Additionally, 2D electrophoresis revealed that scCO2 hydrolyzed alkaline proteins in the extracts. These findings demonstrate the potential of scCO2 treatment in producing modified proteins for food applications.
Collapse
Affiliation(s)
- Paola Mateo-Roque
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Jocksan I. Morales-Camacho
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula 72810, Puebla, Mexico;
| | - Guadalupe Janet Jara-Romero
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Flor de Fátima Rosas-Cárdenas
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Luis Huerta-González
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| |
Collapse
|
3
|
Improvement of techno-functional properties of acidic subunit from amaranth 11S globulin modified by bioactive peptide insertions. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Roy S, Sarkar T, Chakraborty R. Vegetable seeds: A new perspective in future food development. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| | - Tanmay Sarkar
- Malda Polytechnic West Bengal State Council of Technical Education, Govt. of West Bengal Malda India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| |
Collapse
|
5
|
Allaqaband S, Dar AH, Patel U, Kumar N, Nayik GA, Khan SA, Ansari MJ, Alabdallah NM, Kumar P, Pandey VK, Kovács B, Shaikh AM. Utilization of Fruit Seed-Based Bioactive Compounds for Formulating the Nutraceuticals and Functional Food: A Review. Front Nutr 2022; 9:902554. [PMID: 35677543 PMCID: PMC9169564 DOI: 10.3389/fnut.2022.902554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Fruit seeds include a large number of bioactive substances with potential applications in the culinary and pharmaceutical industries, satisfying current demands for natural ingredients, which are generally preferred since they have fewer adverse effects than artificial components. Researchers have long been interested in the functional features, as well as the proximate and mineral compositions, of diverse fruit seeds such as tomato, apple, guava, and dates, among others. Bioactive components such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (-tocopherol) are abundant in fruit by-products and have significant health benefits, making them a viable alternative for the formulation of a wide range of food products with significant functional and nutraceutical potential. This article discusses the role and activities of bioactive chemicals found in tomato, apple, dates, and guava seeds, which can be used in a variety of food forms to cure a variety of cardiovascular and neurological disorders, as well as act as an antioxidant, anticancer, and antibacterial agent. The extraction of diverse bioactive components from by-products could pave the path for the creation of value-added products from the fruit industry, making it more commercially viable while also reducing environmental pollution caused by by-products from the fruit industry.
Collapse
Affiliation(s)
- Shumyla Allaqaband
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Ulpa Patel
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Anand Agricultural University, Godhra, India
| | - Navneet Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Anand Agricultural University, Godhra, India
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Govt. Degree College Shopian, Srinagar, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Pradeep Kumar
- Department of Fruit and Vegetable Processing Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungry
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
6
|
Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tomato is a member of the Solanaceae family and is a crop that is widely cultivated around the world due to its sweet, sour, salty, juicy, and nutritious berries. The processing of tomatoes generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato seeds are reservoirs of various nutrients, such as proteins, carbohydrates, lipids, minerals, and vitamins. These components make tomato seeds an important ingredient for application in food matrices. This review discusses the functional food properties of tomato seeds and their scope of utilization as major ingredients in the functional food industry. In addition, this review describes the development of tomato seeds as a potential nutritional and nutraceutical ingredient, along with recent updates on research conducted worldwide. This is the first review that demonstrates the nutritional profile of tomato seeds along with its diverse functional food properties and application as a functional food ingredient.
Collapse
|
7
|
Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed Pharmacother 2021; 142:112018. [PMID: 34449317 DOI: 10.1016/j.biopha.2021.112018] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
The processing of tomato fruit into puree, juices, ketchup, sauces, and dried powders generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato processing by-products, particularly seeds, are reservoirs of health-promoting macromolecules, such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (α-tocopherol). Health-promoting properties make these bioactive components suitable candidates for the development of novel food and nutraceutical products. This review comprehensively demonstrates the bioactive compounds of tomato seeds along with diverse biomedical activities of tomato seed extract (TSE) for treating cardiovascular ailments, neurological disorders, and act as antioxidant, anticancer, and antimicrobial agent. Utilization of bioactive components can improve the economic feasibility of the tomato processing industry and may help to reduce the environmental pollution generated by tomato by-products.
Collapse
|