1
|
Amărandi RM, Al-Matarneh MC, Popovici L, Ciobanu CI, Neamțu A, Mangalagiu II, Danac R. Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach. Pharmaceuticals (Basel) 2023; 16:865. [PMID: 37375812 DOI: 10.3390/ph16060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Five new series of pyrrolo-fused heterocycles were designed through a scaffold hybridization strategy as analogs of the well-known microtubule inhibitor phenstatin. Compounds were synthesized using the 1,3-dipolar cycloaddition of cycloimmonium N-ylides to ethyl propiolate as a key step. Selected compounds were then evaluated for anticancer activity and ability to inhibit tubulin polymerization in vitro. Notably, pyrrolo[1,2-a]quinoline 10a was active on most tested cell lines, performing better than control phenstatin in several cases, most notably on renal cancer cell line A498 (GI50 27 nM), while inhibiting tubulin polymerization in vitro. In addition, this compound was predicted to have a promising ADMET profile. The molecular details of the interaction between compound 10a and tubulin were investigated through in silico docking experiments, followed by molecular dynamics simulations and configurational entropy calculations. Of note, we found that some of the initially predicted interactions from docking experiments were not stable during molecular dynamics simulations, but that configurational entropy loss was similar in all three cases. Our results suggest that for compound 10a, docking experiments alone are not sufficient for the adequate description of interaction details in terms of target binding, which makes subsequent scaffold optimization more difficult and ultimately hinders drug design. Taken together, these results could help shape novel potent antiproliferative compounds with pyrrolo-fused heterocyclic cores, especially from an in silico methodological perspective.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Maria-Cristina Al-Matarneh
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Lăcrămioara Popovici
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Catalina Ionica Ciobanu
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Andrei Neamțu
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Ionel I Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| |
Collapse
|
2
|
A Review on the Synthesis of Fluorescent Five- and Six-Membered Ring Azaheterocycles. Molecules 2022; 27:molecules27196321. [PMID: 36234858 PMCID: PMC9570872 DOI: 10.3390/molecules27196321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Azaheterocycles rings with five and six members are important tools for the obtaining of fluorescent materials and fluorescent sensors. The relevant advances in the synthesis of azaheterocyclic derivatives and their optical properties investigation, particularly in the last ten years, was our main objective on this review. The review is organized according to the size of the azaheterocycle ring, 5-, 6-membered and fused ring azaheterocycles, as well as our recent contribution on this research field. In each case, the reaction pathways with reaction condition and obtained yield, and evaluation of the optical properties of the obtained products were briefly presented.
Collapse
|
3
|
Zbancioc G, Ciobanu CI, Mangalagiu II, Moldoveanu C. Ultrasound-Assisted Synthesis of Fluorescent Azatetracyclic Derivatives: An Energy-Efficient Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103180. [PMID: 35630657 PMCID: PMC9147717 DOI: 10.3390/molecules27103180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
Abstract
We report here an energy-efficient and straight synthesis of two new classes of derivatized fluorescent azatetracycles under ultrasound (US) irradiation. A first class of azatetracyclic compounds was synthesized by heterogeneous catalytic bromination of the α-keto substituent attached to the pyrrole moiety of the tetracyclic cycloadducts, while for the second, one class was synthesized by nucleophilic substitution of the bromide with the azide group. Comparative with conventional thermal heating (TH) under US irradiation, both types of reactions occur with substantially higher yields, shortened reaction time (from days to hours), lesser energy consumed, easier workup of the reaction, and smaller amounts of solvent required (at least three to five-fold less compared to TH), which make these reactions to be considered as energy efficient. The derivatized azatetracycle are blue emitters with λmax of fluorescence around 430–445 nm. A certain influence of the azatetracycle substituents concerning absorption and fluorescent properties was observed. Compounds anchored with a bulky azide group have shown decreased fluorescence intensity compared with corresponding bromides.
Collapse
Affiliation(s)
- Gheorghita Zbancioc
- Chemistry Department, Alexandru Ioan Cuza University of Iasi, Carol I Bvd., 700506 Iasi, Romania;
- Correspondence: (G.Z.); (C.M.); Tel.: +40-232-201278 (C.M.)
| | - Catalina-Ionica Ciobanu
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, Carol I Bvd., 700506 Iasi, Romania;
| | - Ionel I. Mangalagiu
- Chemistry Department, Alexandru Ioan Cuza University of Iasi, Carol I Bvd., 700506 Iasi, Romania;
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, Carol I Bvd., 700506 Iasi, Romania;
| | - Costel Moldoveanu
- Chemistry Department, Alexandru Ioan Cuza University of Iasi, Carol I Bvd., 700506 Iasi, Romania;
- Correspondence: (G.Z.); (C.M.); Tel.: +40-232-201278 (C.M.)
| |
Collapse
|
4
|
Yapici N, Gao X, Yan X, Hou S, Jockusch S, Lesniak L, Gibson KM, Bi L. Novel Dual-Organelle-Targeting Probe (RCPP) for Simultaneous Measurement of Organellar Acidity and Alkalinity in Living Cells. ACS OMEGA 2021; 6:31447-31456. [PMID: 34869971 PMCID: PMC8637586 DOI: 10.1021/acsomega.1c03087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Many organelles, such as lysosomes and mitochondria, maintain a pH that is different from the cytoplasmic pH. These pH differences have important functional ramifications for those organelles. Many cellular events depend upon a well-compartmentalized distribution of H+ ions spanning the membrane for the optimal function. Cells have developed a variety of mechanisms that enable the regulation of organelle pH. However, the measurement of organellar acidity/alkalinity in living cells has remained a challenge. Currently, most existing probes for the estimation of intracellular pH show a single -organelle targeting capacity. Such probes provide data that fails to comprehensively reveal the pathological and physiological roles and connections between mitochondria and lysosomes in different species. Mitochondrial and lysosomal functions are closely related and important for regulating cellular homeostasis. Accordingly, the design of a single fluorescent probe that can simultaneously target mitochondria and lysosomes is highly desirable, enabling a better understanding of the crosstalk between these organelles. We report the development of a novel fluorescent sensor, rhodamine-coumarin pH probe (RCPP), for detection of organellar acidity/alkalinity. RCPP simultaneously moves between mitochondrion and lysosome subcellular locations, facilitating the simultaneous monitoring of pH alterations in mitochondria and lysosomes.
Collapse
Affiliation(s)
- Nazmiye
B. Yapici
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiang Gao
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shanshan Hou
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lillian Lesniak
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Lanrong Bi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
5
|
Sardaru MC, Rosca I, Morariu S, Ursu EL, Ghiarasim R, Rotaru A. Injectable Thixotropic β-Cyclodextrin-Functionalized Hydrogels Based on Guanosine Quartet Assembly. Int J Mol Sci 2021; 22:ijms22179179. [PMID: 34502085 PMCID: PMC8431444 DOI: 10.3390/ijms22179179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Facile method for the preparation of β–cyclodextrin–functionalized hydrogels based on guanosine quartet assembly was described. A series of seven hydrogels were prepared by linking β–cyclodextrin molecules with guanosine moieties in different ratios through benzene–1,4–diboronic acid linker in the presence of potassium hydroxide. The potassium ions acted as a reticulation agent by forming guanosine quartets, leading to the formation of self–sustained transparent hydrogels. The ratios of the β–cyclodextrin and guanosine components have a significant effect on the internal structuration of the components and, correspondingly, on the mechanical properties of the final gels, offering a tunablity of the system by varying the components ratio. The insights into the hydrogels’ structuration were achieved by circular dichroism, scanning electron microscopy, atomic force microscopy, and X–ray diffraction. Rheological measurements revealed self–healing and thixotropic properties of all the investigated samples, which, in combination with available cyclodextrin cavities for active components loading, make them remarkable candidates for specific applications in biomedical and pharmaceutical fields. Moreover, all the prepared samples displayed selective antimicrobial properties against S. aureus in planktonic and biofilm phase, the activity also depending on the guanosine and cyclodextrin ratio within the hydrogel structure.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Simona Morariu
- Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania;
| | - Elena-Laura Ursu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Razvan Ghiarasim
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Alexandru Rotaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
- Correspondence:
| |
Collapse
|