1
|
Chen J, Xue F, Xie Y, Cui W, Tan L, Niu Y, Shi L, Wang L, Liu L, Wang B, Jiao Y, Lin Y. Discovery of peptide quality markers for quality control and identification of toad venom using LC-MS/MS and label-free methods. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124504. [PMID: 39923613 DOI: 10.1016/j.jchromb.2025.124504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Toad venom, a secretion from the parotoid glands of toads such as Bufo bufo gargarizans Cantor, is a traditional Chinese medicine renowned for its cardiotonic, anti-inflammatory, and antitumor properties. However, due to the rising price of toad venom, its quality control faces significant challenges from widespread adulteration with substances like toad skin and dried toads, which compromise its authenticity and therapeutic efficacy. Currently, no comprehensive method exists for the simultaneous detection of these adulterants. In this study, dried toads were subdivided into skin, flesh, and bone and compared with toad venom from Bufo bufo gargarizans Cantor using nano-liquid chromatography-tandem mass spectrometry (Nano-LC-MS/MS) combined with multivariate statistical analysis. This is the first study to propose a peptide-based method for simultaneously identifying and quantifying adulterants such as toad skin, flesh, and bone in toad venom, offering a promising approach to improve quality control techniques for toad venom. Twenty-seven peptide quality markers were identified, including eight for toad venom, six for toad skin, five for toad flesh, and eight for toad bone. These markers were validated via bioinformatics analysis and HPLC-Triple Quadrupole MS, enabling the establishment of a novel and reliable quality control strategy. A method for determining toad venom content was established using the peptide quality marker NNAYDINEER. The method demonstrated high specificity, excellent linearity (R2 > 0.9977), a limit of quantification (LOQ) of 1 ng/mL, and outstanding repeatability, precision, and stability. Analysis of five batches of toad venom samples revealed their content ranged from 0.0387 % to 0.0963 %. This study offers an innovative approach for both qualitative identification and quantitative determination, providing critical technical and theoretical support for ensuring the quality and authenticity of toad venom-based traditional medicines and related formulations.
Collapse
Affiliation(s)
- Juan Chen
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China; College of Pharmacy, Shandong University Of Tradional Chinese Medicine, Jinan 250355, China
| | - Fei Xue
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Yingying Xie
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Weiliang Cui
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Lejun Tan
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Yan Niu
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Li Shi
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Lin Wang
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China; College of Pharmacy, Shandong University Of Tradional Chinese Medicine, Jinan 250355, China
| | - Li Liu
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China; College of Pharmacy, Shandong University Of Tradional Chinese Medicine, Jinan 250355, China
| | - Bing Wang
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China; College of Pharmacy, Shandong University Of Tradional Chinese Medicine, Jinan 250355, China
| | - Yang Jiao
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Yongqiang Lin
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shangdong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, China; College of Pharmacy, Shandong University Of Tradional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Falla MV, Lebrun I, Pudenzi MA, Oliveira LA, Almeida HF, Santos NG, Rodrigues MS, Spencer PJ, Rocha MM, Pimenta DC, Coelho GR. Hydrophilic interaction chromatography coupled to high resolution mass spectrometry (HILIC-LC-HRMS): An approach to study natural peptides in Viperidae snake venom. J Chromatogr A 2025; 1743:465715. [PMID: 39864224 DOI: 10.1016/j.chroma.2025.465715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Although proteins in snake venoms have been extensively studied and characterized, low-mass molecules remain relatively unexplored, mainly due to their low abundance, secondary role in envenomation, and some analytical technique limitations. However, these small molecules can provide new important data related to venom toxins' molecular structure, functions, and evolutionary relationships. This research aimed to characterize molecules below 10 kDa in the venoms of snakes from the Viperidae families (Bothrops, Agkistrodon, and Bitis) and compare two chromatographic approaches: reverse-phase chromatography (RP), a classic technique, and hydrophilic interaction liquid chromatography (HILIC), an alternative technique, both coupled with high-resolution mass spectrometry (HRMS). The results showed that the separation of the HILIC column provided a more efficient evenly distributed ion profile than RP, contributing to a 25.6% increase in the sequences identified. Homologous sequences for Bradykinin-potentiating peptides (BPPs) and fragments of major venom proteins, possibly cryptids, were found. In addition, BPP 13a, peptides rich in histidine and glycine (pHpG), and spacer sequences were identified in all snakes analyzed, especially with HILIC separation, suggesting that these sequences may be conserved within Viperidae. These findings indicate that the use of the HILIC column, compared to RP, is a promising approach for characterizing peptides in snake venom obtained by the ultrafiltration process. It contributes to the study of these still poorly understood molecules and is also a good option for studying other complex protein/peptide mixtures.
Collapse
Affiliation(s)
- Monica V Falla
- Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil
| | - Ivo Lebrun
- Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil
| | | | | | - Heloisa F Almeida
- Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil
| | - Nathalia G Santos
- Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil
| | - Mariana S Rodrigues
- Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, 05508-000, Brazil
| | - Patrick J Spencer
- Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, 05508-000, Brazil
| | - Marisa M Rocha
- Laboratório de Herpetologia., Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Daniel C Pimenta
- Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil
| | - Guilherme R Coelho
- Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil.
| |
Collapse
|
3
|
Liu Y, Zhang J, Wang B, Zheng F, Yan J. Epidemiological patterns and therapeutic approaches of toad toxin poisoning in a retrospective case study. Sci Rep 2025; 15:5586. [PMID: 39955382 PMCID: PMC11830051 DOI: 10.1038/s41598-025-89809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Toad toxin, a bioactive compound revered in traditional Chinese medicine, has been employed therapeutically for centuries. Recent studies have increasingly confirmed its pharmacological benefits, including cardioprotection, anesthetic effects, anti-inflammatory properties, enhancement of sexual function, and antineoplastic activities. This toxin is applied in the treatment of diverse medical conditions such as chronic bronchitis, pharyngitis, and colon cancer. Nonetheless, the consumption of toad-related substances-such as flesh, eggs, gallbladders-or the medicinal use of toad toxin frequently leads to poisoning incidents, some of which are fatal. This paper comprehensively reviews the principal features of toad toxin poisoning, encompassing clinical symptoms, therapeutic approaches, and other relevant factors to aid in the diagnosis and management, as well as the forensic evaluation of lethal cases. We advocate for further research into the cardiotoxic and neurotoxic effects of toad toxin to deepen our understanding of its poisoning mechanisms and pharmacological profile. Future efforts should focus on regulatory standardization of treatment practices and public education to mitigate the risks associated with toad toxin exposure.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Feifei Zheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Zuo Q, Xu DQ, Yue SJ, Fu RJ, Tang YP. Chemical Composition, Pharmacological Effects and Clinical Applications of Cinobufacini. Chin J Integr Med 2024; 30:366-378. [PMID: 38212503 DOI: 10.1007/s11655-024-3708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 01/13/2024]
Abstract
Chinese medicine cinobufacini is an extract from the dried skin of Bufo bufo gargarizans Cantor, with active ingredients of bufadienolides and indole alkaloids. With further research and clinical applications, it is found that cinobufacini alone or in combination with other therapeutic methods can play an anti-tumor role by controlling proliferation of tumor cells, promoting apoptosis, inhibiting formation of tumor neovascularization, reversing multidrug resistance, and regulating immune response; it also has the functions of relieving cancer pain and regulating immune function. In this paper, the chemical composition, pharmacological effects, clinical applications, and adverse reactions of cinobufacini are summarized. However, the extraction of monomer components of cinobufacini, the relationship between different mechanisms, and the causes of adverse reactions need to be further studied. Also, high-quality clinical studies should be conducted.
Collapse
Affiliation(s)
- Qian Zuo
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
5
|
Ye Q, Lin R, Chen Z, Li J, Zheng C. Isolation, Identification and Chemical Modification of Bufadienolides from Bufo melanostictus Schneider and Their Cytotoxic Activities against Prostate Cancer Cells. Molecules 2024; 29:1571. [PMID: 38611850 PMCID: PMC11013645 DOI: 10.3390/molecules29071571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The traditional Chinese medicine toad venom (Venenum bufonis) has been extensively used to treat various diseases, including cancers, in China and other Southeast Asian countries. The major constituents of toad venom, e.g., bufadienolides and alkaloids, exhibit broad-spectrum pharmacological effects in cancers. Herein, two new bufadienolides (1 and 2), along with eleven known compounds (3-13) were successfully isolated from Bufo melanostictus Schneider. Their structures were elucidated by extensive spectroscopic data and X-ray diffraction analysis. Furthermore, four lactam derivatives were synthesized through the transformation of bufadienolides lactones. The inhibitory effects of these compounds against human prostate cancer cell lines PC-3 and DU145 were evaluated. The outcomes indicated a notable trend, with a substantial subset displaying nanomolar range IC50 values against PC-3 and DU145 cells, underscoring their pronounced cytotoxicity. Moreover, a noteworthy distinction surfaces, wherein lactones consistently outperformed their lactam counterparts, further validating their heightened potency for the treatment of prostate cancer. This study contributes significant preclinical evidence substantiating the therapeutic viability of bufadienolides and toad venom as intervention strategies for prostate cancer.
Collapse
Affiliation(s)
- Qingmei Ye
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Zeping Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| |
Collapse
|
6
|
Rohilla S, Goyal G, Berwal P, Mathur N. A Review on Indole-triazole Molecular Hybrids as a Leading Edge in Drug Discovery: Current Landscape and Future Perspectives. Curr Top Med Chem 2024; 24:1557-1588. [PMID: 38766822 DOI: 10.2174/0115680266307132240509065351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Molecular hybridization is a rational design strategy used to create new ligands or prototypes by identifying and combining specific pharmacophoric subunits from the molecular structures of two or more known bioactive derivatives. Molecular hybridization is a valuable technique in drug discovery, enabling the modulation of unwanted side effects and the creation of potential dual-acting drugs that combine the effects of multiple therapeutic agents. Indole-triazole conjugates have emerged as promising candidates for new drug development. The indole and triazole moieties can be linked through various synthetic strategies, such as click chemistry or other coupling reactions, to generate a library of diverse compounds for biological screening. The achievable structural diversity with indole-triazole conjugates offers avenues to optimize their pharmacokinetic and pharmacodynamic attributes, amplifying their therapeutic efficacy. Researchers have extensively tailored both indole and triazole frameworks with diverse modifications to comprehend their impact on the drug's pharmacokinetic and pharmacodynamic characteristics. The current review article endeavours to explore and discuss various research strategies to design indoletriazole hybrids and elucidate their significance in a variety of pathological conditions. The insights provided herein are anticipated to be beneficial for the researchers and will likely encourage further exploration in this field.
Collapse
Affiliation(s)
- Suman Rohilla
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Garima Goyal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Paras Berwal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Nancy Mathur
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| |
Collapse
|
7
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
8
|
Zhang AA, He QL, Zhao Q. Mining and Characterization of Indolethylamine N-Methyltransferases in Amphibian Toad Bufo gargarizans. Biochemistry 2023; 62:2371-2381. [PMID: 37490721 DOI: 10.1021/acs.biochem.3c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Strong, psychedelic indolethylamines (IAAs) are typically present in trace amounts in the majority of species, but they build up significantly in the skin of amphibian toads, especially N-methylated 5-hydroxytryptamine (5-HT) analogues. However, there is no pertinent research on the investigation of indoleamine N-methyltransferase (INMT) in amphibians, nor is there any adequate information on the key amino acids that influence the activity of known INMTs from other species. Herein, we focused on Bufo toad INMT (BINMT) for the first time and preliminarily identified BINMT 1 from the transcriptomes of Bufo gargarizans active on tryptamine, 5-HT, and N-methyl-5-HT. We established the enzyme kinetic characteristics of BINMT 1 and identified the essential amino acids influencing its activity via molecular docking and site-directed mutagenesis. Subsequently, we carried out sequence alignment and phylogenetic tree analysis on 43 homologous proteins found in the genome of B. gargarizans with BINMT 1 as the probe and selected seven of them for protein expression and activity assays. It was found that only three proteins possessing the highest similarity to BINMT 1 had INMT activity. Our research unveils the binding residues of BINMT for 5-HT analogues for the first time and initiates the study of INMTs in amphibian toads, serving as a tentative reference for further study of BINMT and providing insight into the comprehension of BINMT's catalytic mechanism and its role in the biosynthesis of 5-HT analogues in Bufo toads. It also contributes to the expansion of the INMT library to help explore and explain interspecies evolution in the future.
Collapse
Affiliation(s)
- An-An Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
9
|
Ye Q, Zhou X, Han F, Zheng C. Toad venom-derived bufadienolides and their therapeutic application in prostate cancers: Current status and future directions. Front Chem 2023; 11:1137547. [PMID: 37007051 PMCID: PMC10060886 DOI: 10.3389/fchem.2023.1137547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Specially, the high incidence rate and prevalence of drug resistance have rendered prostate cancer (PCa) a great threat to men’s health. Novel modalities with different structures or mechanisms are in urgent need to overcome these two challenges. Traditional Chinese medicine toad venom-derived agents (TVAs) have shown to possess versatile bioactivities in treating certain diseases including PCa. In this work, we attempted to have an overview of bufadienolides, the major bioactive components in TVAs, in the treatment of PCa in the past decade, including their derivatives developed by medicinal chemists to antagonize certain drawbacks of bufadienolides such as innate toxic effect to normal cells. Generally, bufadienolides can effectively induce apoptosis and suppress PCa cells in-vitro and in-vivo, majorly mediated by regulating certain microRNAs/long non-coding RNAs, or by modulating key pro-survival and pro-metastasis players in PCa. Importantly, critical obstacles and challenges using TVAs will be discussed and possible solutions and future perspectives will also be presented in this review. Further in-depth studies are clearly needed to decipher the mechanisms, e.g., targets and pathways, toxic effects and fully reveal their application. The information collected in this work may help evoke more effects in developing bufadienolides as therapeutic agents in PCa.
Collapse
Affiliation(s)
- Qingmei Ye
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- *Correspondence: Caijuan Zheng,
| |
Collapse
|
10
|
Song J, Zhang B, Li M, Zhang J. The current scenario of naturally occurring indole alkaloids with anticancer potential. Fitoterapia 2023; 165:105430. [PMID: 36634875 DOI: 10.1016/j.fitote.2023.105430] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Naturally occurring indole alkaloids are ubiquitously present in nature and possess extensive biological properties and structural diversity. Mechanistically, naturally occurring indole alkaloids have the potential to inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. Accordingly, naturally occurring indole alkaloids exhibit promising activity against both drug-sensitive and drug-resistant cancers including multidrug-resistant forms. Therefore, naturally occurring indole alkaloids constitute an important source of anticancer drug leads and candidates. The goal of this review is to highlight the current scenario of naturally occurring indole alkaloids with anticancer potential, covering articles published from 2018 to present. The names, sources, and antiproliferative activity are discussed to continuously open up a map for the remarkable exploration of more effective candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Ming Li
- Department of Oncology and Hematology, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Jinbiao Zhang
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China.
| |
Collapse
|
11
|
Lv Y, Li Y, Wen Z, Shi Q. Transcriptomic and gene-family dynamic analyses reveal gene expression pattern and evolution in toxin-producing tissues of Asiatic toad (Bufo gargarizans). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.924248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comprising a major clade of Anura, toads produce and secrete numerous toxins from both the parotoid glands behind their eyes and their dorsal skin. These toxins, made of various proteins and compounds, possess pharmacological potential to be repurposed to benefit human health. However, the detailed genetic regulation of toad toxin production is still poorly understood. A recent publication uncovering the genome of the representative Asiatic toad (Bufo gargarizans) provides a good reference to resolve this issue. In the present study, we sequenced the transcriptomes of parotoid gland, dorsal skin and liver from the Asiatic toad. Combining our data with 35 previously published transcriptomes across eight different tissues from the same species but from different locations, we constructed a comprehensive gene co-expression network of the Asiatic toad with the assistance of the reference genome assembly. We identified 2,701 co-expressed genes in the toxin-producing tissues (including parotoid gland and dorsal skin). By comparative genomic analysis, we identified 599 expanded gene families with 2,720 genes. Through overlapping these co-expressed genes in the toad toxin-producing tissues, we observed that three cytochrome P450 (Cyp) family members (Cyp27a1, Cyp2c29, and Cyp2c39) were significantly enriched in pathways related to cholesterol metabolism. Cholesterol is a critical precursor to steroids, and the known main steroidal toxins of bufadienolides are considered as the major bioactive components in the parotoid glands of Asiatic toad. We found 3-hydroxy-methylglutaryl CoA reductase (hmgcr), encoding the major rate-limiting enzyme for cholesterol biosynthesis, appears with multiple copies in both Asiatic toad and common toad, possibly originating from a tandem duplication event. The five copies of hmgcr genes consistently displayed higher transcription levels in the parotoid gland when compared with the abdominal skin, suggesting it as a vital candidate gene in the involvement of toad toxin production. Taken together, our current study uncovers transcriptomic and gene-family dynamic evidence to reveal the vital role of both expanded gene copies and gene expression changes for production of toad toxins.
Collapse
|
12
|
Li FJ, Hu JH, Ren X, Zhou CM, Liu Q, Zhang YQ. Toad venom: A comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharm (Weinheim) 2021; 354:e2100060. [PMID: 33887066 DOI: 10.1002/ardp.202100060] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
Toad venom, a traditional natural medicine, has been used for hundreds of years in China for treating different diseases. Many studies have been performed to elucidate the cardiotonic and analgesic activities of toad venom. Until the last decade, an increasing number of studies have documented that toad venom is a source of lead compound(s) for the development of potential cancer treatment drugs. Research has shown that toad venom contains 96 types of bufadienolide monomers and 23 types of indole alkaloids, such as bufalin, cinobufagin, arenobufagin, and resibufogenin, which exhibit a wide range of anticancer activities in vitro and, in particular, in vivo for a range of cancers. The main antitumor mechanisms are likely to be apoptosis or/and autophagy induction, cell cycle arrest, cell metastasis suppression, reversal of drug resistance, or growth inhibition of cancer cells. This review summarizes the chemical constituents of toad venom, analyzing their anticancer activities and molecular mechanisms for cancer treatments. We also outline the importance of further studies regarding the material basis and anticancer mechanisms of toad venom.
Collapse
Affiliation(s)
- Fang-Jie Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Hong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Mei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Yong-Qing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|