1
|
Yoshida M, Nakagawa D, Hozumi H, Horikawa Y, Makino S, Nakamura H, Shikata T. A New Concept for Interpretation of the Viscoelastic Behavior of Aqueous Sodium Carboxymethyl Cellulose Systems. Biomacromolecules 2024; 25:3420-3431. [PMID: 38733614 DOI: 10.1021/acs.biomac.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Viscoelastic behaviors of aqueous systems of commercially available sodium carboxymethyl cellulose (NaCMC) samples with the degrees of substitution (DS) of approximately 0.68 and 1.3, and the weight-average molar masses (Mw) higher than 200 kg mol-1 dissolved in pure water and aqueous sodium chloride solutions were investigated over a wide concentration (c) range of NaCMC samples. The dependencies of the specific viscosity (ηsp), the average relaxation time (τw), and the reciprocal of the steady-state compliance (Je-1) on c were discussed. The relationships ηsp ∝ c3, τw ∝ c2, and Je-1 ∝ c, characteristic of the rod particle suspensions, were clearly observed in a range lower than the c where the critical gel behavior was observed. Thus, a new concept based on the rheology of rod particle suspensions was employed to interpret the viscoelastic behaviors obtained in the c range. In this context, NaCMC polymer molecules are assumed to behave as extended rod particles with length (L) and diameter (d), including effective electrostatic repulsive distances, due to the dissociation of Na+ in aqueous systems. Thus, the number density of polymer molecules is given to be ν = c/Mw, and viscoelastic parameters such as ηsp, τw, and Je-1 are calculated using the theoretical model for rod particle suspensions proposed by Doi and Edwards. This concept reasonably described not only the viscoelastic data obtained in this study but also those from other groups using NaCMC samples with different DS and Mw values.
Collapse
Affiliation(s)
- Misato Yoshida
- Division of Natural Resources and Eco-materials, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Daiki Nakagawa
- Division of Natural Resources and Eco-materials, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hyota Hozumi
- Division of Natural Resources and Eco-materials, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yoshiki Horikawa
- Division of Natural Resources and Eco-materials, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Soichiro Makino
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Hiroshi Nakamura
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Toshiyuki Shikata
- Division of Natural Resources and Eco-materials, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Abbas G, Tunio AH, Memon KR, Mahesar AA, Memon FH. Effect of Temperature and Alkali Solution to Activate Diethyl Carbonate for Improving Rheological Properties of Modified Hydroxyethyl Methyl Cellulose. ACS OMEGA 2024; 9:4540-4554. [PMID: 38313537 PMCID: PMC10831831 DOI: 10.1021/acsomega.3c07451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
The applications of cellulose ethers in the petroleum industry represent various limitations in maintaining their rheological properties with an increase in both concentration and temperature. This paper proposed a new method to improve the rheological properties of hydroxyethyl methyl cellulose (HEMC) by incorporating diethyl carbonate (DEC) as a transesterification agent and alkali base solutions. Fourier transform infrared (FTIR) analysis confirmed the grafting of both composites onto the HEMC surface. The addition of sodium hydroxide (NaOH) improved the stability of the polymeric solution as observed from ζ-potential measurement. Shear viscosity and frequency sweep experiments were conducted at concentrations of 0.25-1 wt % at ambient and elevated temperatures ranging from 80-110 °C using a rheometer. In the results, the increase in viscosity at specific times and temperatures indicated the activation of DEC through the saponification reactions with alkali solutions. All polymeric solutions exhibited shear-thinning behavior and were fitted well by the Cross model. NaOH-based modified solution exhibited low shear viscosity compared to the DEC-HEMC solution at ambient temperature. However, at 110 °C, its viscosity exceeded that of the DEC-HEMC solution due to the activation of DEC. In frequency sweep analysis, the loss modulus (G″) was greater than the storage modulus (G') at lower frequencies and vice versa at higher frequencies. This signifies the viscoelastic behavior of modified solutions at 0.50 wt % and higher concentrations. The flow point (G' = G″) shifted to a low frequency, indicating the increasing dominance of elastic behavior with the rising temperature. At 110 °C, the NaOH-based modified solution exhibited both viscous and elastic behavior, confirming the solution's thermal stability and flowability. In conclusion, modified HEMC solution was found to be effective in controlling viscosity under ambient conditions, enhancing solubility, and improving thermal stability. This modified composite could play a significant role in optimizing viscoelastic properties and fluid performance under challenging wellbore conditions.
Collapse
Affiliation(s)
- Ghulam Abbas
- Institute
of Petroleum & Natural Gas Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Sindh, Pakistan
| | - Abdul Haque Tunio
- Institute
of Petroleum & Natural Gas Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Sindh, Pakistan
| | - Khalil Rehman Memon
- Institute
of Petroleum & Natural Gas Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Sindh, Pakistan
| | - Aftab Ahmed Mahesar
- Institute
of Petroleum & Natural Gas Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Sindh, Pakistan
| | - Faisal Hussain Memon
- Department
of Petroleum & Natural Gas Engineering, Mehran University of Engineering and Technology, S.Z.A.B Campus, Khairpur
Mir’s 66020, Sindh, Pakistan
| |
Collapse
|
3
|
Park J, Kim S, Kim TI. Polyethylenimine-Conjugated Hydroxyethyl Cellulose for Doxorubicin/Bcl-2 siRNA Co-Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15020708. [PMID: 36840030 PMCID: PMC9965717 DOI: 10.3390/pharmaceutics15020708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hydroxyethyl cellulose (HEC), widely known for its biocompatibility and water solubility, is a polysaccharide with potential for pharmaceutical applications. Here, we synthesized polyethylenimine2k (PEI2k)-conjugated hydroxyethyl cellulose (HECP2k) for doxorubicin/Bcl-2 siRNA co-delivery systems. HECP2ks were synthesized by reductive amination of PEI2k with periodate-oxidized HEC. The synthesis of the polymers was characterized using 1H NMR, 13C NMR, primary amine quantification, FT-IR, and GPC. Via agarose gel electrophoresis and Zeta-sizer measurement, it was found that HECP2ks condensed pDNA to positively charged and nano-sized complexes (100-300 nm, ~30 mV). The cytotoxicity of HECP2ks was low and HECP2k 10X exhibited higher transfection efficiency than PEI25k even in serum condition, showing its high serum stability from ethylene oxide side chains. Flow cytometry analysis and confocal laser microscopy observation verified the superior cellular uptake and efficient endosome escape of HECP2k 10X. HECP2k 10X also could load Dox and Bcl-2 siRNA, forming nano-particles (HECP2k 10X@Dox/siRNA). By median effect analysis and annexin V staining analysis, it was found that HECP2k 10X@Dox/siRNA complexes could cause synergistically enhanced anti-cancer effects to cancer cells via induction of apoptosis. Consequently, it was concluded that HECP2k possesses great potential as a promising Dox/Bcl-2 siRNA co-delivery carrier.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seoyoung Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-il Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Morita M, Matsumura F, Shikata T, Ogawa Y, Kondo N, Shiraga K. Hydrogen-Bond Configurations of Hydration Water around Glycerol Investigated by HOH Bending and OH Stretching Analysis. J Phys Chem B 2022; 126:9871-9880. [PMID: 36350734 DOI: 10.1021/acs.jpcb.2c05445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Toward a comprehensive understanding of the mechanism of glycerol as a moisturizer, studies on the hydrogen-bond (HB) structure of hydration water, which is known to be disordered by glycerol, are insufficient. To this aim, we evaluated the HB configurations based on the HOH bending and OH stretching spectra of the hydration water from those of glycerol/water mixtures by subtracting the contributions of bulk water and glycerol using dielectric relaxation spectroscopy. Analysis of the HOH bending band showed that hydration water-donating HBs lose the intermolecular bending coupling with increasing glycerol by replacing the water-water HBs with water-glycerol HBs. The OH stretching band provided more detailed insight into the HB configuration, indicating that the double-donor double-acceptor and double-donor single-acceptor configurations in bulk water change to a predominantly double-donor single-acceptor configuration in hydration water around glycerol. The formation of more donor HBs than acceptor HBs may be due to the steric constrains by glycerol and/or differences in the partial charge on the oxygen atom between water and glycerol.
Collapse
Affiliation(s)
- Miho Morita
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Fumiki Matsumura
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Toshiyuki Shikata
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| | - Yuichi Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Naoshi Kondo
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Keiichiro Shiraga
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi332-0012, Japan
| |
Collapse
|
5
|
Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14111201. [PMID: 34832983 PMCID: PMC8621906 DOI: 10.3390/ph14111201] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.
Collapse
|
6
|
Sriram A, Tangirala S, Atmakuri S, Hoque S, Modani S, Srivastava S, Mahajan S, Maji I, Kumar R, Khatri D, Madan J, Singh PK. Budding Multi-matrix Technology-a Retrospective Approach, Deep Insights, and Future Perspectives. AAPS PharmSciTech 2021; 22:264. [PMID: 34734325 DOI: 10.1208/s12249-021-02133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The human race is consistently striving for achieving good health and eliminate disease-causing factors. For the last few decades, scientists have been endeavoring to invent and innovate technologies that can substitute the conventional dosage forms and enable targeted and prolonged drug release at a particular site. The novel multi-matrix technology is a type of matrix formulation where the formulation is embraced to have a matrix system with multiple number of matrices. The MMX technology embraces with a combination of outer hydrophilic layer and amphiphilic/lipophilic core layer, within which drug is encapsulated followed by enteric coating for extended/targeted release at the required site. In comparison to conventional oral drug delivery systems and other drug delivery systems, multi-matrix (MMX) technology formulations afford many advantages. Additionally, it attributes for targeting strategy aimed at the colon and offers modified prolonged drug release. Thus, it has emerged rapidly as a potential alternative option in targeted oral drug delivery. However, the development of this MMX technology formulations is a exigent task and also has its own set of limitations. Due to its promising advantages and colon targeting strategy over the other colon targeted drug delivery systems, premier global companies are exploiting its potential. This article review deep insights into the formulation procedures, drug delivery mechanism, advantages, limitations, safety and efficacy studies of various marketed drug formulations of MMX technology including regulatory perspectives and future perspectives.
Collapse
|
7
|
Solid and Semisolid Innovative Formulations Containing Miconazole-Loaded Solid Lipid Microparticles to Promote Drug Entrapment into the Buccal Mucosa. Pharmaceutics 2021; 13:pharmaceutics13091361. [PMID: 34575437 PMCID: PMC8468017 DOI: 10.3390/pharmaceutics13091361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
The currently available antifungal therapy for oral candidiasis (OC) has various limitations restricting its clinical use, such as short retention time, suboptimal drug concentration and low patients compliance. These issues could be overcome using micro or nanotechnology. In particular, solid lipid microparticles (SLMs) resulted as a particularly promising penetration enhancer carrier for lipophilic drugs, such as the antifungal miconazole (MCZ). Based on these considerations, cetyl decanoate (here synthesized without the use of metal catalysis) was employed together with 1-hexadecanol to prepare MCZ-loaded SLMs. These resulted in a powder composed of 45–300 µm diameter solid spherical particles, able to load a high amount of MCZ in the amorphous form and characterized by a melting temperature range perfectly compatible with oromucosal administration (35–37 °C). Moreover, when compared to Daktarin® 2% oral gel in ex vivo experiments, SLMs were able to increase up to three-fold MCZ accumulation into the porcine buccal mucosa. The prepared SLMs were then loaded into a buccal gel or a microcomposite mucoadhesive buccal film and evaluated in terms of MCZ permeation and/or accumulation into porcine buccal mucosa by using lower doses than the conventional dosage form. The promising results obtained highlighted an enhancement in terms of MCZ accumulation even at low doses. Furthermore, the prepared buccal film was eligible as stable, reproducible and also highly mucoadhesive. Therefore, the formulated SLMs represent a penetration enhancer vehicle suitable to reduce the dose of lipophilic drugs to be administered to achieve the desired therapeutic effects, as well as being able to be effectively embedded into easily administrable solid or semisolid dosage forms.
Collapse
|
8
|
Li Q, Li Y, Jin Z, Li Y, Chen Y, Zhou J. Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution. Molecules 2021; 26:molecules26113201. [PMID: 34071835 PMCID: PMC8198951 DOI: 10.3390/molecules26113201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Water-soluble cellulose ethers are widely used as stabilizers, thickeners, and viscosity modifiers in many industries. Understanding rheological behavior of the polymers is of great significance to the effective control of their applications. In this work, a series of cyanoethylcellulose (CEC) samples with different molecular weights were prepared with cellulose and acrylonitrile in NaOH/urea aqueous solution under the homogeneous reaction. The rheological properties of water-soluble CECs as a function of concentration and molecular weight were investigated using shear viscosity and dynamic rheological measurements. Viscoelastic behaviors have been successfully described by the Carreau model, the Ostwald-de-Waele equation, and the Cox–Merz rule. The entanglement concentrations were determined to be 0.6, 0.85, and 1.5 wt% for CEC-11, CEC-7, and CEC-3, respectively. All of the solutions exhibited viscous behavior rather than a clear sol-gel transition in all tested concentrations. The heterogeneous nature of CEC in an aqueous solution was determined from the Cox–Merz rule due to the coexistence of single chain complexes and aggregates. In addition, the CEC aqueous solutions showed good thermal and time stability, and the transition with temperature was reversible.
Collapse
Affiliation(s)
- Qian Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
- Correspondence: (Q.L.); (J.Z.)
| | - Yuehu Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Zehua Jin
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Yujie Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Yifan Chen
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Jinping Zhou
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
- Correspondence: (Q.L.); (J.Z.)
| |
Collapse
|
9
|
Karoyo AH, Wilson LD. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1095. [PMID: 33652859 PMCID: PMC7956345 DOI: 10.3390/ma14051095] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
Hydrogels are hydrophilic 3D networks that are able to ingest large amounts of water or biological fluids, and are potential candidates for biosensors, drug delivery vectors, energy harvester devices, and carriers or matrices for cells in tissue engineering. Natural polymers, e.g., cellulose, chitosan and starch, have excellent properties that afford fabrication of advanced hydrogel materials for biomedical applications: biodegradability, biocompatibility, non-toxicity, hydrophilicity, thermal and chemical stability, and the high capacity for swelling induced by facile synthetic modification, among other physicochemical properties. Hydrogels require variable time to reach an equilibrium swelling due to the variable diffusion rates of water sorption, capillary action, and other modalities. In this study, the nature, transport kinetics, and the role of water in the formation and structural stability of various types of hydrogels comprised of natural polymers are reviewed. Since water is an integral part of hydrogels that constitute a substantive portion of its composition, there is a need to obtain an improved understanding of the role of hydration in the structure, degree of swelling and the mechanical stability of such biomaterial hydrogels. The capacity of the polymer chains to swell in an aqueous solvent can be expressed by the rubber elasticity theory and other thermodynamic contributions; whereas the rate of water diffusion can be driven either by concentration gradient or chemical potential. An overview of fabrication strategies for various types of hydrogels is presented as well as their responsiveness to external stimuli, along with their potential utility in diverse and novel applications. This review aims to shed light on the role of hydration to the structure and function of hydrogels. In turn, this review will further contribute to the development of advanced materials, such as "injectable hydrogels" and super-adsorbents for applications in the field of environmental science and biomedicine.
Collapse
Affiliation(s)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|