1
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
2
|
Advances and challenges in cancer treatment and nutraceutical prevention: the possible role of dietary phenols in BRCA regulation. PHYTOCHEMISTRY REVIEWS 2021. [DOI: 10.1007/s11101-021-09771-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractOver the years, the attention towards the role of phytochemicals in dietary natural products in reducing the risk of developing cancer is rising. Cancer is the second primary cause of mortality worldwide. The current therapeutic options for cancer treatment are surgical excision, immunotherapy, chemotherapy, and radiotherapy. Unfortunately, in case of metastases or chemoresistance, the treatment options become very limited. Despite the advances in medical and pharmaceutical sciences, the impact of available treatments on survival is not satisfactory. Recently, natural products are a great deal of interest as potential anti-cancer agents. Among them, phenolic compounds have gained a great deal of interest, thanks to their anti-cancer activity. The present review focuses on the suppression of cancer by targeting BRCA gene expression using dietary polyphenols, as well as the clinical aspects of polyphenolic agents in cancer therapy. They regulate specific key processes involved in cancer progression and modulate the expression of oncogenic proteins, like p27, p21, and p53, which may lead to apoptosis, cell cycle arrest, inhibition of cell proliferation, and, consequently, cancer suppression. Thus, one of the mechanisms underlying the anti-cancer activity of phenolics involves the regulation of tumor suppressor genes. Among them, the BRCA genes, with the two forms (BRCA-1 and BRCA-2), play a pivotal role in cancer protection and prevention. BRCA germline mutations are associated with an increased risk of developing several types of cancers, including ovarian, breast, and prostate cancers. BRCA genes also play a key role in the sensitivity and response of cancer cells to specific pharmacological treatments. As the importance of BRCA-1 and BRCA-2 in reducing cancer invasiveness, repairing DNA damages, oncosoppression, and cell cycle checkpoint, their regulation by natural molecules has been examined.
Collapse
|
3
|
de Souza APM, Costa MCA, de Aguiar AR, Bressan GC, de Almeida Lima GD, Lima WP, Borsodi MPG, Bergmann BR, Ferreira MMC, Teixeira RR. Leishmanicidal and cytotoxic activities and 4D-QSAR of 2-arylidene indan-1,3-diones. Arch Pharm (Weinheim) 2021; 354:e2100081. [PMID: 34323311 DOI: 10.1002/ardp.202100081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023]
Abstract
The indan-1,3-dione and its derivatives are important building blocks in organic synthesis and present important biological activities. Herein, the leishmanicidal and cytotoxicity evaluation of 16 2-arylidene indan-1,3-diones is described. The compounds were evaluated against the leukemia cell lines HL60 and Nalm6, and the most effective ones were 2-(4-nitrobenzylidene)-1H-indene-1,3(2H)-dione (4) and 4-[(1,3-dioxo-1H-inden-2(3H)-ylidene)methyl]benzonitrile (10), presenting IC50 values of around 30 µmol/L against Nalm6. The leishmanicidal activity was assessed on Leishmania amazonensis, with derivative 4 (IC50 = 16.6 µmol/L) being the most active. A four-dimensional quantitative structure-activity analysis (4D-QSAR) was applied to the indandione derivatives, through partial least-squares regression. The statistics presented by the regression models built with the selected field descriptors of Coulomb (C) and Lennard-Jones (L) nature, considering the activities against L. amazonensis, HL60, and Nalm6 leukemia cells, were, respectively, R2 = 0.88, 0.92, and 0.98; Q2 = 0.83, 0.88, and 0.97. The presence of positive Coulomb descriptors near the carbonyl groups indicates that these polar groups are related to the activities. Besides, the presence of positive Lennard-Jones descriptors close to substituents R3 or R1 indicates that bulky nonpolar substituents in these positions tend to increase the activities. This study provides useful insights into the mode of action of indandione derivatives for each biological activity involved.
Collapse
Affiliation(s)
- Ana P M de Souza
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria C A Costa
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Alex R de Aguiar
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Gustavo C Bressan
- Escola de Ciências da Saúde, Universidade do Grande Rio, Duque de Caxias, Brazil
| | | | - Wallace P Lima
- Escola de Ciências da Saúde, Universidade do Grande Rio, Duque de Caxias, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria P G Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bartira R Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia M C Ferreira
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Róbson R Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
do Carmo MAV, Granato D, Azevedo L. Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: A cell-based point of view. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:253-280. [PMID: 34507644 DOI: 10.1016/bs.afnr.2021.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phenolic compounds have demonstrated several in vitro beneficial properties by acting as antioxidant and pro-oxidant agents. This chapter approaches the relationship among oxidative stress, cancer, phenolic compounds and antiproliferative activity. Moreover, it discusses in vitro techniques and their biological applications, regarding cell viability and intracellular measure of reactive oxygen assays. The in vitro methods are important tools for screening and understanding the pathways involved on antiproliferative and antioxidant/pro-oxidant effects of phenolic compounds. These findings open avenues for the development of innovative food, chemical structures, technological applications and future perspectives in this research field.
Collapse
Affiliation(s)
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Luciana Azevedo
- Federal University of Alfenas, Nutrition Faculty, Alfenas, MG, Brazil.
| |
Collapse
|