1
|
Kraithong S, Ke X, Lee S, Bunyameen N, Kuang W, Huang Q, Zhang X, Huang R. Characterization of ulvan polysaccharide extracted from Ulva pertusa and its effect on thermal, rheological, and gelling properties of rice flour. Food Chem 2024; 465:141974. [PMID: 39546992 DOI: 10.1016/j.foodchem.2024.141974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Three ulvan fractions (UPs 1-3) were extracted from Ulva pertusa via hot-water extraction. UP1 exhibited a molecular weight of 729,151 Da, while UPs 2 and 3 ranged from 19,952 to 750,384 Da. These fractions differed in monosaccharide, uronic acid, and sulfate levels. Zeta potentials for polysaccharide solutions (0.2-0.6 % w/v) ranged from -34.4 to -25.1, all demonstrating shear-thinning behavior. Incorporating UPs 1-3 solutions (0.2-0.6 % w/v) with rice flour increased gelatinization temperatures and modified pasting properties, increasing peak time, peak viscosity, and trough viscosity while reducing breakdown, final, and setback viscosities. Ulvan polysaccharide improved the viscous behavior of rice flour paste, indicated by increased loss modulus and tan δ (p > 0.05). Furthermore, ulvan polysaccharide improved the microstructure and texture of rice flour gel, with UP1 (0.6 % w/v) forming denser matrices and better texture. Molecular docking analysis suggested that hydrogen bonding is the primary interaction between rice glutelin and ulvan components.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xu Ke
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Graduate Training Base in Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, 518104 Shenzhen, PR China
| | - Suyong Lee
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 143-747, South Korea
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Weiyang Kuang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Yang M, Zhang J, Yan H, Pan Y, Zhou J, Zhong H, Wang J, Cai H, Feng F, Zhao M. A comprehensive review of medium chain monoglycerides on metabolic pathways, nutritional and functional properties, nanotechnology formulations and applications in food system. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38779723 DOI: 10.1080/10408398.2024.2353403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd, Shaoguan, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wang X, Li H, Liu Y, Ding S, Jiang L, Wang R. A novel edible solid fat substitute: Preparation of biphasic stabilized bigels based on glyceryl monolaurate and gellan gum. Int J Biol Macromol 2024; 263:130081. [PMID: 38423907 DOI: 10.1016/j.ijbiomac.2024.130081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Solid fats contribute to a delicate and pleasant flavor for food, but its excessive intake increases the risk of cardiovascular disease. Bigel is considered a promising solid fat substitute as it significantly reduces fat content while meeting consumer demands for food flavor and a balanced diet. In this study, bigels were prepared by mixing glyceryl monolaurate-based oleogel (10 wt%) and gellan gum-based hydrogel (0.8 wt%) at ratios of 1:3, 1:1, and 3:1. The microscopic results indicated that the oleogel/hydrogel ratios influenced the structure of bigels, forming oil-in-water, bi-continuous, and water-in-oil bigels with the increase of oleogel proportion, respectively. All bigels presented a semi-solid structure dominated by elasticity, and their hardness, gumminess, chewiness, and cohesiveness increased with the enhancement of hydrogel proportion. Among them, the bigels (S25:L75 and S25:H75) prepared with an oleogel/hydrogel ratio of 1:3 showed excellent freeze-thaw stability, maintaining an oil holding capacity of >95 % after three freeze-thaw cycles. Meanwhile, they also presented good oxidative stabilities, where the peroxide values and malondialdehyde contents were below 0.07 g/100 g and 1.5 mg MDA/kg at 12 d, respectively. Therefore, S25:L75 and S25:H75 are expected to be green, low-cost, healthy, and sustainable alternatives to solid fats.
Collapse
Affiliation(s)
- Xinyao Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Huan Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| |
Collapse
|
4
|
Hashemi B, Varidi M, Assadpour E, Zhang F, Jafari SM. Natural oleogelators for the formulation of oleogels by considering their rheological and textural perspective; a review. Int J Biol Macromol 2024; 259:129246. [PMID: 38199553 DOI: 10.1016/j.ijbiomac.2024.129246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
A well-known method for reducing or swapping out undesirable and controversial fats in food is oleogelation. To quantify the effects of droplets-particle inclusion on the textural aspects of gelled systems, a thorough understanding of rheological behavior of oleogels (OGs) is necessary. Otherwise stated, a rational grasp of rheological characterization is essential for food development, optimization, and processing (when touching or putting food into the mouth, rheological flow qualities influence our perception). This narrative review primarily intends to investigate rheological and textural characteristics of various oleogelator-based OGs, such as operative connection between hardness, distortion, stresses, and rheological parameters like viscosity, elasticity, and viscoelasticity, as well as flow behavior and recovery. Expanding oleogelators concentration and synergistic interactions between them increase robustness and moduli values, as compared to single oleogelators. However, given the lack of information on the connection between the OGs' macroscopic rheological characteristics and their microstructural characteristics, this review presents state-of-the-art overview of various oleogelator-based OGs, highlighting the importance of structure-rheology relationships of OGs to provide advanced knowledge on the development of innovative OGs.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Fibrous and Spherical Aggregates of Ovotransferrin as Stabilizers for Oleogel-Based Pickering Emulsions: Preparation, Characteristics and Curcumin Delivery. Gels 2022; 8:gels8080517. [PMID: 36005118 PMCID: PMC9407489 DOI: 10.3390/gels8080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to explore the effects and mechanisms of differently shaped aggregates of ovotransferrin (OVT) particles on oleogel-based Pickering emulsions (OPEs). Medium-chain triglyceride oil-based oleogels were constructed using beeswax, and their gel-sol melting temperatures were investigated. Atomic force microscopy confirmed that both OVT fibrils and OVT spheres were successfully prepared, and the three-phase contact angle measurements indicated that fibrous and spherical aggregates of OVT particles possessed great potential to stabilize the OPEs. Afterward, the oil-in-water OPEs were fabricated using oleogel as the oil phase and OVT fibrils/spheres as the emulsifiers. The results revealed that OPEs stabilized with OVT fibrils (FIB-OPEs) presented a higher degree of emulsification, smaller droplet size, better physical stability and stronger apparent viscosity compared with OPEs stabilized with OVT spheres (SPH-OPEs). The freeze–thaw stability test showed that the FIB-OPEs remained stable after three freeze–thaw cycles, while the SPH-OPEs could barely withstand one freeze–thaw cycle. An in vitro digestion study suggested that OVT fibrils conferred distinctly higher lipolysis (46.0%) and bioaccessibility (62.8%) of curcumin to OPEs.
Collapse
|
6
|
Cui H, Tang C, Wu S, Julian McClements D, Liu S, Li B, Li Y. Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chem 2022; 384:132589. [PMID: 35258001 DOI: 10.1016/j.foodchem.2022.132589] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
In this study, chitosan-based bigels were fabricated, where glycerol monolaurate was added in MCT oil to produce a gelled lipid phase and cinnamaldehyde was included in the lipid phase in order to act as a crosslinking agent. The synergistic effect of pH on chemical crosslinking effects was investigated. The potential of using these bigels as an alternative to cream was also investigated. The pH of the aqueous phase played an important role in controlling the extent of the Schiff-base reaction promoted by cinnamaldehyde. At pH 3.8, the bigels formed were homogenous but at pH 5.0 and 5.5 they exhibited phase separation, which highlighted the importance of chemical crosslinking. To better mimic the properties of real cream, span 80 was added to create a more homogeneous and smoother structure of the bigels. These bigels might provide a healthy and more sustainable alterative to food products that contain plastic fats, like cream.
Collapse
Affiliation(s)
- Huanhuan Cui
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Functional Food Engineering &Technology Research Center of Hubei Province, China
| | - Shan Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering &Technology Research Center of Hubei Province, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering &Technology Research Center of Hubei Province, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering &Technology Research Center of Hubei Province, China.
| |
Collapse
|
7
|
Tang C, Wan Z, Chen Y, Tang Y, Fan W, Cao Y, Song M, Qin J, Xiao H, Guo S, Tang Z. Structure and Properties of Organogels Prepared from Rapeseed Oil with Stigmasterol. Foods 2022; 11:939. [PMID: 35407025 PMCID: PMC8997424 DOI: 10.3390/foods11070939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
This work used the natural ingredient stigmasterol as an oleogelator to explore the effect of concentration on the properties of organogels. Organogels based on rapeseed oil were investigated using various techniques (oil binding capacity, rheology, polarized light microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy) to better understand their physical and microscopic properties. Results showed that stigmasterol was an efficient and thermoreversible oleogelator, capable of structuring rapeseed oil at a stigmasterol concentration as low as 2% with a gelation temperature of 5 °C. The oil binding capacity values of organogels increased to 99.74% as the concentration of stigmasterol was increased to 6%. The rheological properties revealed that organogels prepared with stigmasterol were a pseudoplastic fluid with non-covalent physical crosslinking, and the G' of the organogels did not change with the frequency of scanning increased, showing the characteristics of strong gel. The microscopic properties and Fourier transform infrared spectroscopy showed that stigmasterol formed rod-like crystals through the self-assembly of intermolecular hydrogen bonds, fixing rapeseed oil in its three-dimensional structure to form organogels. Therefore, stigmasterol can be considered as a good organogelator. It is expected to be widely used in food, medicine, and other biological-related fields.
Collapse
Affiliation(s)
- Caili Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Zheng Wan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yiyun Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Wei Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingyue Song
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingping Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Changsha 410045, China
| |
Collapse
|