1
|
Ahmadi F, Kariman K, Mousavi M, Rengel Z. Echinacea: Bioactive Compounds and Agronomy. PLANTS (BASEL, SWITZERLAND) 2024; 13:1235. [PMID: 38732450 PMCID: PMC11085449 DOI: 10.3390/plants13091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
For centuries, medicinal plants have been used as sources of remedies and treatments for various disorders and diseases. Recently, there has been renewed interest in these plants due to their potential pharmaceutical properties, offering natural alternatives to synthetic drugs. Echinacea, among the world's most important medicinal plants, possesses immunological, antibacterial, antifungal, and antiviral properties. Nevertheless, there is a notable lack of thorough information regarding the echinacea species, underscoring the vital need for a comprehensive review paper to consolidate existing knowledge. The current review provides a thorough analysis of the existing knowledge on recent advances in understanding the physiology, secondary metabolites, agronomy, and ecology of echinacea plants, focusing on E. purpurea, E. angustifolia, and E. pallida. Pharmacologically advantageous effects of echinacea species on human health, particularly distinguished for its ability to safeguard the nervous system and combat cancer, are discussed. We also highlight challenges in echinacea research and provide insights into diverse approaches to boost the biosynthesis of secondary metabolites of interest in echinacea plants and optimize their large-scale farming. Various academic databases were employed to carry out an extensive literature review of publications from 2001 to 2024. The medicinal properties of echinacea plants are attributed to diverse classes of compounds, including caffeic acid derivatives (CADs), chicoric acid, echinacoside, chlorogenic acid, cynarine, phenolic and flavonoid compounds, polysaccharides, and alkylamides. Numerous critical issues have emerged, including the identification of active metabolites with limited bioavailability, the elucidation of specific molecular signaling pathways or targets linked to echinacoside effects, and the scarcity of robust clinical trials. This raises the overarching question of whether scientific inquiry can effectively contribute to harnessing the potential of natural compounds. A systematic review and analysis are essential to furnish insights and lay the groundwork for future research endeavors focused on the echinacea natural products.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Milad Mousavi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| |
Collapse
|
2
|
Islam F, Islam MS, Ahmed K, Amanat M. Unveiling the Anthelminthic Potential of Merremia vitifolia Stem through in Vitro and in Silico Approach. Chem Biodivers 2023; 20:e202300860. [PMID: 37715726 DOI: 10.1002/cbdv.202300860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to assess the anthelmintic activity of methanol extracts from Merremia vitifolia stems using a combination approach encompassing experimental, in vitro, and in silico evaluations. Despite the well-recognized pharmacological properties of M. vitifolia, its potential as an anthelmintic agent remained unexplored. This plant's anthelmintic potential was assessed on adult earthworms (Pheretima posthuma), revealing a dose-dependent reduction in spontaneous motility leading to paralysis and eventual mortality. The most effective dose of M. vitifolia (200 mg/ml) for anthelmintic effects on Pheretima posthuma was identified. Complementary in silico investigations were also conducted, employing Autodock PyRx 0.8 for docking studies of reported M. vitifolia compounds. Notably, quercetin emerged as a promising candidate with superior binding energies against β-tubulin (-8.3 Kcal/mol). Moreover, this comprehensive research underlines the anthelmintic potential of Merremia vitifolia stem extract and highlights quercetin as a noteworthy compound for further investigation in the quest for novel anthelmintic agents.
Collapse
Affiliation(s)
- Fakhrul Islam
- M. Pharm, Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Mohammad Shariful Islam
- M. Pharm, Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Kawser Ahmed
- M. Pharm, Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Muhammed Amanat
- PhD Scholar, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| |
Collapse
|
3
|
Petrova A, Ognyanov M, Petkova N, Denev P. Phytochemical Characterization of Purple Coneflower Roots ( Echinacea purpurea (L.) Moench.) and Their Extracts. Molecules 2023; 28:3956. [PMID: 37175366 PMCID: PMC10180171 DOI: 10.3390/molecules28093956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Echinacea purpurea is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower (Echinacea purpurea) roots and their extracts (water, 40%, 50%, 60% ethanol, and 60% glycerol). Phytochemical characterization was carried out by gravimetric, spectrophotometric, and chromatographic methods. Echinacea roots were characterized by a low lipid (0.8%) content. In contrast, carbohydrates (45%) and proteins (20%) occupied a large part of the dry matter. Amongst the extracts, the highest yield was obtained using water as a solvent (53%). Water extract was rich in protein and carbohydrates as fructans (inulin) were the most abundant carbohydrate constituent. The most exhaustive recovery of the phenolic components was conducted by extraction with 40% ethanol and 60% glycerol. It was found that water is the most suitable extractant for obtaining a polysaccharide-containing complex (PSC) (8.87%). PSC was composed mainly of fructans (inulin) and proteins with different molecular weight distributions. The yield of PSC decreased with an increasing ethanol concentration (40% > 50% > 60%) but the lowest yield was obtained from 60% glycerol extract. The obtained results showed that Echinacea roots contained a large amount of biologically active substances-phenolic components and polysaccharides and that glycerol was equally efficient to ethanol in extracting caffeic acid derivatives from purple coneflower roots. The data can be used for the preparation of extracts having different compositions and thus easily be incorporated into commercial products.
Collapse
Affiliation(s)
- Ani Petrova
- Laboratory of Biologically Active Substances-Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances-Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances-Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
4
|
Marijan M, Jakupović L, Končić MZ. Hydroxypropyl-β-Cyclodextrin-Glycerol-Assisted Extraction of Phenolics from Satureja montana L.: Optimization, Anti-Elastase and Anti-Hyaluronidase Properties of the Extracts. Processes (Basel) 2023. [DOI: 10.3390/pr11041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
A green method for hydroxypropyl-β-cyclodextrin-glycerol-assisted extraction (HCGAE) of bioactive phenolics from S. montana, Lamiaceae was optimized using Box-Behnken design and response surface methodology and compared conventional water/ethanol-based extraction. The procedure was aimed at obtaining extracts with the maximum content of total phenols (TP), flavonoids (TF), dihydroxycinnamic acids (TDCA), rosmarinic acid (RA), and luteolin 7-O-glucoside (LG). The impact of glycerol content (0–70%), 2-hydroxypropyl-β-cyclodextrin content (0–0.4 mmol), temperature (20–70 °C), herbal material weight (0.3–0.8 g), extraction duration (5–25 min), and ultrasound power (144–720 W) on the extraction efficiency was analyzed. Four extracts with maximum amounts of target phenols, OPT-TP (5.93 mg/mL), OPT-TDCA-RA (4.17 mg/mL and 1.16 mg/mL, respectively), OPT-TF (0.99 mg/mL), and OPT-LG (0.28 mg/mL) were prepared. Comparison of the content of TDCA, TF, RA, and LG with those obtained in water/ethanol-based extraction demonstrated the superiority of the HCGAE approach for the extraction of phenols from S. montana. The extracts displayed good anti-elastase and excellent anti-hyaluronidase activity. IC50 values of the anti-hyaluronidase activity (1.67 ± 0.06 μL extract/mL, 1.16 ± 0.08 μL extract/mL, 0.85 ± 0.03 μL extract/mL, and 0.79 ± 0.05 μL extract/mL for OPT-TP, OPT-TDCA-RA, OPT-TF, and OPT-LG, respectively) surpassed that of the applied positive control, tannic acid. The observed bioactivity of the optimized extracts makes them promising active ingredients for natural cosmetics. The results of this research indicate that HCGAE is an excellent alternative to conventional water/ethanol-based extraction of phenolics from Satureja montana L.-yielding extracts with potent anti-elastase and anti-hyaluronidase properties suitable for direct use in cosmetic products.
Collapse
Affiliation(s)
- Marijan Marijan
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Lejsa Jakupović
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Extraction Optimization, Antioxidant, Cosmeceutical and Wound Healing Potential of Echinacea purpurea Glycerolic Extracts. Molecules 2023; 28:molecules28031177. [PMID: 36770844 PMCID: PMC9920817 DOI: 10.3390/molecules28031177] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Echinacea purpurea is a plant with immunomodulating properties, often used in topical preparations for treatment of small superficial wounds. In the presented study, the best conditions for ultrasound-assisted extraction of caffeic acid derivatives (caftaric and cichoric acid) (TPA-opt extract), as well as the conditions best suited for preparation of the extract with high radical scavenging activity (RSA-opt extract), from E. purpurea aerial parts were determined. A Box-Behnken design based on glycerol content (%, w/w), temperature (°C), ultrasonication power (W) and time (min) as independent variables was performed. Antioxidant, antiaging and wound healing effects of the two prepared extracts were evaluated. The results demonstrate that glycerol extraction is a fast and efficient method for preparation of the extracts with excellent radical scavenging, Fe2+ chelating and antioxidant abilities. Furthermore, the extracts demonstrated notable collagenase, elastase and tyrosinase inhibitory activity, indicating their antiaging properties. Well-pronounced hyaluronidase-inhibitory activities, with IC50 values lower than 30 μL extract/mL, as well as the ability to promote scratch closure in HaCaT keratinocyte monolayers, even in concentrations as low as 2.5 μL extract/mL (for RSA-opt), demonstrate promising wound healing effects of E. purpurea. The fact that the investigated extracts were prepared using glycerol, a non-toxic and environmentally friendly solvent, widely used in cosmetics, makes them suitable for direct use in specialized cosmeceutical formulations.
Collapse
|
6
|
Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Oliveira SDSDC, Sarmento EDS, Marinho VH, Pereira RR, Fonseca LP, Ferreira IM. Green Extraction of Annatto Seed Oily Extract and Its Use as a Pharmaceutical Material for the Production of Lipid Nanoparticles. Molecules 2022; 27:molecules27165187. [PMID: 36014427 PMCID: PMC9412625 DOI: 10.3390/molecules27165187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
This work developd nanomaterials formulated from annatto seed oily extract (ASE), myristic acid (tetradecanoic acid), and their fatty acid esters. The annatto seed oily extract was obtained using only soybean oil (ASE + SO) and Brazil nut oil (ASE + BNO). The UV/VIS analysis of the oily extracts showed three characteristic peaks of the bixin molecule at 430, 456 and 486 nm. The lipid nanoparticles obtained using myristic acid and ASE + BNO or only BNO showed better results than the oil soybean extract, i.e., the particle size was <200 nm, PDI value was in the range of 0.2−0.3, and had no visual physical instability as they kept stable for 28 days at 4 °C. Lipid nanoemulsions were also produced with esters of myristic acid and ASE + BNO. These fatty acid esters significantly influenced the particle size of nanoemulsions. For instance, methyl tetradecanoate led to the smallest particle size nanoemulsions (124 nm), homogeneous size distribution, and high physical stability under 4 and 32 °C for 28 days. This work demonstrates that the chemical composition of vegetable oils and myristic acid esters, the storage temperature, the chain length of fatty acid esters (FAE), and their use as co-lipids improve the physical stability of lipid nanoemulsions and nanoparticles from annatto seed oily extract.
Collapse
Affiliation(s)
- Sônia do Socorro do C. Oliveira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK, KM 02, Macapa 68902-280, Brazil
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapa 68901-025, Brazil
| | - Edmilson dos S. Sarmento
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK, KM 02, Macapa 68902-280, Brazil
| | - Victor H. Marinho
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK, KM 02, Macapa 68902-280, Brazil
| | - Rayanne R. Pereira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK, KM 02, Macapa 68902-280, Brazil
| | - Luis P. Fonseca
- Departamento de Bioengenharia, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Correspondence: (L.P.F.); (I.M.F.)
| | - Irlon M. Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK, KM 02, Macapa 68902-280, Brazil
- Correspondence: (L.P.F.); (I.M.F.)
| |
Collapse
|
8
|
GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of Papaver decaisnei and Determination of Its Antioxidants and Anticancer Activities. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1405157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Papaver L. plant (Papaver decaisnei) has ethnobotanical records in many countries including Iraqi Kurdistan. The current study investigates the methanol (99.9%) extracts (10 μg/mL) of roots, leaves, and flowers of Papaver decaisnei in terms of phytochemistry by gas chromatography-mass spectrophotometry GC-MS, in vitro antioxidant activity by radical scavenging and reducing power assays, and finally, the anticancer actions as IC50 (inhibitory concentration at 50%) against human colorectal adenocarcinoma (Caco-2), mammary cancer cells (MCF-7), and human cervical carcinoma (HeLa) cells. The results showed 22, 19, and 17 chemicals for roots, leaves, and flowers of P. decaisnei, respectively. The prevalent organic compounds of P. decaisnei were alkaloids (62.03%), phenolics (55.43%), fatty acids (42.51%), esters (32.08%), terpenoids (25.59%), and phytosterols (15.68%), namely, roemerine (70.44%), 9,12,15-octadecatrien-1-ol (37.45%), hexadecanoic acid (33.72%), decarbomethoxytabersonine (24.49%), and γ-sitosterol (11.22%). The antioxidant activity of plant organs was within 39.1–143.5 μg/mL for DPPH, 135.4–276.4 μg/mL for ABTS, 12.4–34.3 μg/mL for FRAP, and 42.6–75.8 μg/mL for CUPRAC assays. The anticancer of P. decaisnei was found as 125.3–388.4 μg/mL against all tested cell lines (Caco-2, MCF-7, and HeLa). The detected alkaloids and bioactivity of P. decaisnei encourage future isolation of those remarkable alkaloids (reomerine) for potential usage in the pharmaceutical industry.
Collapse
|
9
|
Increasing medicinal and phytochemical compounds of coneflower (Echinacea purpurea L.) as affected by NO 3-/NH 4+ ratio and perlite particle size in hydroponics. Sci Rep 2021; 11:15202. [PMID: 34312445 PMCID: PMC8313566 DOI: 10.1038/s41598-021-94589-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Medicinal plants are considered as one of the most important sources of chemical compounds, so preparing a suitable culture media for medicinal plant growth is a critical factor. The present study is aimed to improve the caffeic acid derivatives and alkylamides percentages of Echinacea purpurea root extract in hydroponic culture media with different perlite particle size and NO3-/NH4+ ratios. Perlite particle size in the growing media was varied as very coarse perlite (more than 2 mm), coarse perlite (1.5-2 mm), medium perlite (1-1.5 mm), fine perlite (0.5-1 mm), and very fine perlite (less than 0.5 mm) in different ratios to peat moss (including pure perlite, 50:50 v/v, 30:70 v/v, and pure peat moss). Two NO3-/NH4+ ratios (90:10 and 70:30) were tested in each growing media. All phytochemical analyses were performed according to standard methods using high performance liquid chromatography (HPLC). It was found that the E. purpurea grown in the medium containing very fine-grade perlite with 50:50 v/v perlite to peat moss ratio had the maximum caffeic acid derivatives, including chicoric acid (17 mg g-1 DW), caftaric acid (6.3 mg g-1 DW), chlorogenic acid (0.93 mg g-1 DW), cynarin (0.84 mg g-1 DW), and echinacoside (0.73 mg g-1 DW), as well as, alkylamides (54.21%). The percentages of these phytochemical compounds increased by decreasing perlite particle size and increasing of NO3-/NH4+ ratio. The major alkylamide in the E. purpurea root extract was dodeca-2E, 4E, 8Z-10 (E/Z)-tetraenoic acid isobutylamide in all treatments, ranging from 31.12 to 54.21% of total dry weight. It can be concluded that optimizing hydroponic culture media and nutrient solution has significant effects on E. purpurea chemical compounds.
Collapse
|
10
|
Optimization of Two Eco-Friendly Extractions of Black Medick ( Medicago lupulina L.) Phenols and Their Antioxidant, Cosmeceutical, α-Glucosidase and α-Amylase Inhibitory Properties. Molecules 2021; 26:molecules26061610. [PMID: 33799441 PMCID: PMC7998307 DOI: 10.3390/molecules26061610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Medicago lupulina is an ancient edible plant from the Fabaceae family. In this work, two eco-friendly methods for extraction of bioactive phenolics from M. lupulina were developed using mixtures of water with two non-toxic, skin- and environmentally-friendly polyol solvents: glycerol and polypropylene glycol. Ultrasound-assisted extractions were optimized using a Box–Behnken design. The independent variables were the concentration of organic solvent in water (X1), extraction temperature (X2) and time (X3), while the response was phenolic content. The optimum conditions for extraction of polyphenols were (X1, X2, X3): (45%, 70 °C, 60 min) and (10%, 80 °C, 60 min) for glycerol and polypropylene glycol extraction, respectively. The extracts prepared at optimum conditions were rich in phenolic compounds, mainly derivatives of apigenin, kaempferol, luteolin, quercetin, caffeic and ferulic acid, as well as coumestrol. Their cosmeceutical and antidiabetic activity was tested. Both extracts demonstrated notable antioxidant, anti-lipoxygenase and anti-α-amylase activity. In addition to those activities, the glycerol extract efficiently inhibited protein coagulation, elastase and α-glucosidase activity. Glycerol present in the extract displayed enzyme-inhibiting activity in several assays and supported the action of the bioactive constituents. Thus, the optimized glycerol extract is a desirable candidate for direct incorporation in antidiabetic food supplements and cosmeceutical products.
Collapse
|