1
|
Cubero-Cardoso J, Llamas M, Trujillo-Reyes Á, Fernández-Prior Á, Rodríguez-Gutiérrez G. Assessing the potential of olive mill solid waste as feedstock for methane and volatile fatty acids production via anaerobic bioprocesses. N Biotechnol 2024; 84:77-84. [PMID: 39357797 DOI: 10.1016/j.nbt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
The extensive production of olive mill solid waste (OMSW) from olive oil industry in the Mediterranean basin claims effective treatments and valorization strategies. This study aims to elucidate the potential of anaerobic digestion (AD) and anaerobic fermentation (AF) to convert pre-treated OMSW into biogas (CH4) and volatile fatty acids (VFA), respectively. The two thermal treatment conditions (65 °C and 180 °C) that are being implemented in the industry that manages the OMSW were tested. Comparing the two treatments aims to demonstrate the influence on the AD process of the degree of solubilization and degradation of the metabolites produced from the same substrate. AD of OMSW treated at low-temperature (65 °C) exhibited similar methane yields (195 ± 8 mL CH4/g volatile solid (VS)) to raw OMSW. AD of the solid phase (SP) after high-temperature treatment with acid addition at 180 °C resulted in methane yields comparable to raw OMSW while the liquid phase (LP) exhibited low methane yields (85 ± 10 mL CH4/g VS). Nevertheless, LP/180 °C exhibited the highest VFA bioconversion at 27.6 %, compared to less than 10 % for SP/180 ºC, SP/65 °C, and raw OMSW. The VFA profile showed notable variations with thermal treatment temperatures. Propionic acid dominated at SP/65 °C, while acetic acid became the primary VFA at 180 °C. Furthermore, significant degradation rates of phenolic compounds and furans were observed during the final day of both anaerobic processes. Overall, these findings suggest that AD is more suitable for raw OMSW, treated at low temperature and SP at high temperature, while AF offers a promising alternative for high-temperature-treated LP.
Collapse
Affiliation(s)
- Juan Cubero-Cardoso
- Instituto de la Grasa, Spanish Scientific Research Council (CSIC), Ctra. de Utrera, km 1, 41013 Seville, Spain; Institute of Water Research, University of Granada, Granada 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, Granada 18011, Spain.
| | - Mercedes Llamas
- Instituto de la Grasa, Spanish Scientific Research Council (CSIC), Ctra. de Utrera, km 1, 41013 Seville, Spain
| | - Ángeles Trujillo-Reyes
- Instituto de la Grasa, Spanish Scientific Research Council (CSIC), Ctra. de Utrera, km 1, 41013 Seville, Spain; Institute of Water Research, University of Granada, Granada 18071, Spain
| | - África Fernández-Prior
- Instituto de la Grasa, Spanish Scientific Research Council (CSIC), Ctra. de Utrera, km 1, 41013 Seville, Spain; Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | | |
Collapse
|
2
|
Benavides V, Pinto-Ibieta F, Serrano A, Rubilar O, Ciudad G. Use of Anthracophyllum Discolor and Stereum Hirsutum as a Suitable Strategy for Delignification and Phenolic Removal of Olive Mill Solid Waste. Foods 2022; 11:foods11111587. [PMID: 35681337 PMCID: PMC9180551 DOI: 10.3390/foods11111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the use of the white-rot fungi (WRF) Anthracophyllum discolor and Stereum hirsutum as a biological pretreatment for olive mill solid mill waste (OMSW). The WRF strains proposed were added directly to OMSW. The assays consisted of determining the need to add supplementary nutrients, an exogenous carbon source or use agitation systems, and evaluating WRF growth, enzyme activity, phenolic compound removal and lignin degradation. The highest ligninolytic enzyme activity was found at day 10, reaching 176.7 U/L of manganese-independent peroxidase (MniP) produced by A. discolor, and the highest phenolic removal (more than 80% with both strains) was reached after 24 days of incubation. The confocal laser scanning microscopy analysis (CLSM) confirmed lignin degradation through the drop in lignin relative fluorescence units (RFU) from 3967 for untreated OMSW to 235 and 221 RFU, showing a lignin relative degradation of 94.1% and 94.4% after 24 days of treatment by A. discolor and S. hirsutum, respectively. The results demonstrate for the first time that A. discolor and S. hirsutum were able to degrade lignin and remove phenolic compounds from OMSW using this as the sole substrate without adding other nutrients or using agitation systems. This work indicates that it could be possible to design an in situ pretreatment of the valorization of OMSW, avoiding complex systems or transportation. In this sense, future research under non-sterile conditions is needed to evaluate the competition of WRF with other microorganisms present in the OMSW. The main drawbacks of this work are associated with both the low reaction time and the water addition. However, OMSW is seasonal waste produced in one season per year, being stored for a long time. In terms of water addition, the necessary optimization will be addressed in future research.
Collapse
Affiliation(s)
- Viviana Benavides
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile;
| | - Fernanda Pinto-Ibieta
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco 4780000, Chile
| | - Antonio Serrano
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18011 Granada, Spain;
- Instituto de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain
| | - Olga Rubilar
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Scientific and Technological Bioresources Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Scientific and Technological Bioresources Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
- Correspondence: ; Tel.: +56-45-2325556
| |
Collapse
|
3
|
Factors That Affect Methane Yield Using Raw Olive Alperujo (Unhydrolyzed) as Substrate in BMP Assays. RECYCLING 2022. [DOI: 10.3390/recycling7020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The olive alperujo (OA) corresponds to the solid waste generated in the olive oil extraction process using the two-phase centrifugation method. OA is produced in large quantities (800 kg OA/ton olives processed) and is characterized by its high moisture content, organic matter, and low pH. In Chile, the olive oil industry is recent, and one of its main challenges is to be able to manage OA to reduce the impact caused by its disposal. In this sense, its valorization as biogas by means of anaerobic digestion is an economically attractive option. For this, it is previously necessary to evaluate the biomethane potential (BMP) of the raw OA using batch assays. This study was focused on evaluating the factors that most affect the methane yield (MY) when using OA as substrate in BMP tests. First, a sweep analysis (Plackett–Burman) was applied to determine those factors that, according to the literature, would have an influence on the BMP tests. Among the factors studied, the most significant were preincubation, OA concentration, and agitation level. Subsequently, a 23 factorial experimental design was applied to evaluate the effect of these factors on MY at different levels. Results show that the OA concentration was the most significant factor affecting MY.
Collapse
|