1
|
Bishani A, Meschaninova MI, Zenkova MA, Chernolovskaya EL. The Impact of Chemical Modifications on the Interferon-Inducing and Antiproliferative Activity of Short Double-Stranded Immunostimulating RNA. Molecules 2024; 29:3225. [PMID: 38999177 PMCID: PMC11243415 DOI: 10.3390/molecules29133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
A short 19 bp dsRNA with 3'-trinucleotide overhangs acting as immunostimulating RNA (isRNA) demonstrated strong antiproliferative action against cancer cells, immunostimulatory activity through activation of cytokines and Type-I IFN secretion, as well as anti-tumor and anti-metastatic effects in vivo. The aim of this study was to determine the tolerance of chemical modifications (2'-F, 2'-OMe, PS, cholesterol, and amino acids) located at different positions within this isRNA to its ability to activate the innate immune system. The obtained duplexes were tested in vivo for their ability to activate the synthesis of interferon-α in mice, and in tumor cell cultures for their ability to inhibit their proliferation. The obtained data show that chemical modifications in the composition of isRNA have different effects on its individual functions, including interferon-inducing and antiproliferative effects. The effect of modifications depends not only on the type of modification but also on its location and the surrounding context of the modifications. This study made it possible to identify leader patterns of modifications that enhance the properties of isRNA: F2/F2 and F2_S/F2 for interferon-inducing activity, as well as F2_S5/F2_S5, F2-NH2/F2-NH2, and Ch-F2/Ch-F2 for antiproliferative action. These modifications can improve the pharmacokinetic and pharmacodynamic properties, as well as increase the specificity of isRNA action to obtain the desired effect.
Collapse
Affiliation(s)
| | | | | | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (M.I.M.); (M.A.Z.)
| |
Collapse
|
2
|
Kumar N, Kumar S, Shukla A, Kumar S, Singh RK, Ulasov I, Kumar S, Patel AK, Yadav L, Tiwari R, Rachana, Mohanta SP, Kaushalendra, Delu V, Acharya A. Mitochondrial-mediated apoptosis as a therapeutic target for FNC (2'-deoxy-2'-b-fluoro-4'-azidocytidine)-induced inhibition of Dalton's lymphoma growth and proliferation. Discov Oncol 2024; 15:16. [PMID: 38252337 PMCID: PMC10803707 DOI: 10.1007/s12672-023-00829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024] Open
Abstract
PURPOSE T-cell lymphomas, refer to a diverse set of lymphomas that originate from T-cells, a type of white blood cell, with limited treatment options. This investigation aimed to assess the efficacy and mechanism of a novel fluorinated nucleoside analogue (FNA), 2'-deoxy-2'-β-fluoro-4'-azidocytidine (FNC), against T-cell lymphoma using Dalton's lymphoma (DL)-bearing mice as a model. METHODS Balb/c mice transplanted with the DL tumor model received FNC treatment to study therapeutic efficacy against T-cell lymphoma. Behavioral monitoring, physiological measurements, and various analyses were conducted to evaluate treatment effects for mechanistic investigations. RESULTS The results of study indicated that FNC prevented DL-altered behavior parameters, weight gain and alteration in organ structure, hematological parameters, and liver enzyme levels. Moreover, FNC treatment restored organ structures, attenuated angiogenesis, reduced DL cell viability and proliferation through apoptosis. The mechanism investigation revealed FNC diminished MMP levels, induced apoptosis through ROS induction, and activated mitochondrial-mediated pathways leading to increase in mean survival time of DL mice. These findings suggest that FNC has potential therapeutic effects in mitigating DL-induced adverse effects. CONCLUSION FNC represents an efficient and targeted treatment strategy against T-cell lymphoma. FNC's proficient ability to induce apoptosis through ROS generation and MMP reduction makes it a promising candidate for developing newer and more effective anticancer therapies. Continued research could unveil FNC's potential role in designing a better therapeutic approach against NHL.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjeev Kumar
- Department of Zoology, Lucknow University, Lucknow, Uttar Pradesh, 226007, India
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Sandeep Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Lokesh Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ruchi Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rachana
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | | | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Vikram Delu
- Haryana State Biodiversity Board, Panchkula, Haryana, 134109, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
4
|
Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. CHEM REC 2022; 22:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology -, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha-751013, India.,Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, Encinitas, CA92024-6615, California, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| |
Collapse
|
5
|
Couturier S, Peyrottes S, Périgaud C. 2’‐Derivatisation of 3’‐
C‐
Methyl Pyrimidine Nucleosides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sarah Couturier
- UMR 5247 CNRS Université Montpellier, ENSCM Institut des Biomolécules Max Mousseron (IBMM) Campus Triolet case courrier 1705, Place E. Bataillon 34095 Montpellier France
| | - Suzanne Peyrottes
- UMR 5247 CNRS Université Montpellier, ENSCM Institut des Biomolécules Max Mousseron (IBMM) Campus Triolet case courrier 1705, Place E. Bataillon 34095 Montpellier France
| | - Christian Périgaud
- UMR 5247 CNRS Université Montpellier, ENSCM Institut des Biomolécules Max Mousseron (IBMM) Campus Triolet case courrier 1705, Place E. Bataillon 34095 Montpellier France
| |
Collapse
|
6
|
Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways. Biomolecules 2021; 11:biom11040586. [PMID: 33923608 PMCID: PMC8073115 DOI: 10.3390/biom11040586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/22/2023] Open
Abstract
A comparative study of the possibilities of using ribokinase → phosphopentomutase → nucleoside phosphorylase cascades in the synthesis of modified nucleosides was carried out. Recombinant phosphopentomutase from Thermus thermophilus HB27 was obtained for the first time: a strain producing a soluble form of the enzyme was created, and a method for its isolation and chromatographic purification was developed. It was shown that cascade syntheses of modified nucleosides can be carried out both by the mesophilic and thermophilic routes from D-pentoses: ribose, 2-deoxyribose, arabinose, xylose, and 2-deoxy-2-fluoroarabinose. The efficiency of 2-chloradenine nucleoside synthesis decreases in the following order: Rib (92), dRib (74), Ara (66), F-Ara (8), and Xyl (2%) in 30 min for mesophilic enzymes. For thermophilic enzymes: Rib (76), dRib (62), Ara (32), F-Ara (<1), and Xyl (2%) in 30 min. Upon incubation of the reaction mixtures for a day, the amounts of 2-chloroadenine riboside (thermophilic cascade), 2-deoxyribosides (both cascades), and arabinoside (mesophilic cascade) decreased roughly by half. The conversion of the base to 2-fluoroarabinosides and xylosides continued to increase in both cases and reached 20-40%. Four nucleosides were quantitatively produced by a cascade of enzymes from D-ribose and D-arabinose. The ribosides of 8-azaguanine (thermophilic cascade) and allopurinol (mesophilic cascade) were synthesized. For the first time, D-arabinosides of 2-chloro-6-methoxypurine and 2-fluoro-6-methoxypurine were synthesized using the mesophilic cascade. Despite the relatively small difference in temperatures when performing the cascade reactions (50 and 80 °C), the rate of product formation in the reactions with Escherichia coli enzymes was significantly higher. E. coli enzymes also provided a higher content of the target products in the reaction mixture. Therefore, they are more appropriate for use in the polyenzymatic synthesis of modified nucleosides.
Collapse
|