1
|
Avramescu ML, Casey K, Levesque C, Chen J, Wiseman C, Beauchemin S. Identification and quantification of trace metal(loid)s in water-extractable road dust nanoparticles using SP-ICP-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171720. [PMID: 38490431 DOI: 10.1016/j.scitotenv.2024.171720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Resuspension of road dust is a major source of airborne particulate matter (PM) in urban environments. Inhalation of ultrafine particles (UFP; < 0.1 μm) represents a health concern due to their ability to reach the alveoli and be translocated into the blood stream. It is therefore important to characterize chemical properties of UFPs associated with vehicle emissions. We investigated the capability of Single-Particle ICP-MS (SP-ICP-MS) to quantify key metal(loid)s in nanoparticles (NPs; < 0.1 μm) isolated from road dust collected in Toronto, Canada. Water extraction was performed to separate the <1-μm fraction from two different road dust samples (local road vs. arterial road) and a multi-element SP-ICP-MS analysis was then conducted on the samples' supernatants. Based on the particle number concentrations obtained for both supernatants, the metal(loid)-containing NPs could be grouped in the following categories: high (Cu and Zn, > 1.3 × 1011 particles/L), medium (V, Cr, Ba, Pb, Sb, Ce, La), low (As, Co, Ni, < 4.6 × 109 particles/L). The limit of detection for particle number concentration was below 5.5 × 106 particles/L for most elements, except for Cu, Co, Ni, Cr, and V (between 0.9 and 7.7 × 107 particles/L). The results demonstrate that road dust contains a wide range of readily mobilizable metal(loid)-bearing NPs and that NP numbers may vary as a function of road type. These findings have important implications for human health risk assessments in urban areas. Further research is needed, however, to comprehensively assess the NP content of road dust as influenced by various factors, including traffic volume and speed, fleet composition, and street sweeping frequency. The described method can quickly characterize multiple isotopes per sample in complex matrices, and offers the advantage of rapid sample scanning for the identification of NPs containing potentially toxic transition metal(loid)s at a low detection limit.
Collapse
Affiliation(s)
- Mary-Luyza Avramescu
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada..
| | - Katherine Casey
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Christine Levesque
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Jian Chen
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Clare Wiseman
- School of the Environment, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Suzanne Beauchemin
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
2
|
Li Z, Hadioui M, Wilkinson KJ. Extraction of Silicon-Containing Nanoparticles from an Agricultural Soil for Analysis by Single Particle Sector Field and Time-of-Flight Inductively Coupled Plasma Mass Spectrometry. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2049. [PMID: 37513060 PMCID: PMC10383646 DOI: 10.3390/nano13142049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
The increased use of silica and silicon-containing nanoparticles (Si-NP) in agricultural applications has stimulated interest in determining their potential migration in the environment and their uptake by living organisms. Understanding the fate and behavior of Si-NPs will require their accurate analysis and characterization in very complex environmental matrices. In this study, we investigated Si-NP analysis in soil using single-particle ICP-MS. A magnetic sector instrument was operated at medium resolution to overcome the impact of polyatomic interferences (e.g., 14N14N and 12C16O) on 28Si determinations. Consequently, a size detection limit of 29 ± 3 nm (diameter of spherical SiO2 NP) was achieved in Milli-Q water. Si-NP were extracted from agricultural soil using several extractants, including Ca(NO3)2, Mg(NO3)2, BaCl2, NaNO3, Na4P2O7, fulvic acid (FA) and Na2H2EDTA. The best extraction efficiency was found for Na4P2O7, for which the size distribution of Si-NP in the leachates was well preserved for at least one month. On the other hand, Ca(NO3)2, Mg(NO3)2 and BaCl2 were relatively less effective and generally led to particle agglomeration. A time-of-flight ICP-MS was also used to examine the nature of the extracted Si-NP on a single-particle basis. Aluminosilicates accounted for the greatest number of extracted NP (~46%), followed by NP where Si was the only detected metal (presumably SiO2, ~30%).
Collapse
Affiliation(s)
- Zhizhong Li
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Madjid Hadioui
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| |
Collapse
|
3
|
Fang L, Huang H, Quirk JD, Zheng J, Shen D, Manion B, Mixdorf M, Karmakar P, Sudlow GP, Tang R, Achilefu S. Analysis of Stable Chelate-free Gadolinium Loaded Titanium Dioxide Nanoparticles for MRI-Guided Radionuclide Stimulated Cancer Treatment. CURR ANAL CHEM 2022; 18:826-835. [PMID: 36561765 PMCID: PMC9770661 DOI: 10.2174/1573411018666220321102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Recent studies demonstrate that titanium dioxide nanoparticles (TiO2 NPs) are an effective source of reactive oxygen species (ROS) for photodynamic therapy and radionuclide stimulated dynamic therapy (RaST). Unfortunately tracking the in vivo distribution of TiO2 NPs noninvasively remains elusive. Objective Given the use of gadolinium (Gd) chelates as effective contrast agents for magnetic resonance imaging (MRI), this study aims to (1) develop hybrid TiO2-Gd NPs that exhibit high relaxivity for tracking the NPs without loss of ROS generating capacity; and (2) establish a simple colorimetric assay for quantifying Gd loading and stability. Methods A chelate-free, heat-induced method was used to load Gd onto TiO2 NPs, which was coated with transferrin (Tf). A sensitive colorimetric assay and inductively coupled plasma mass spectrometry (ICP-MS) were used to determine Gd loading and stability of the TiO2-Gd-Tf NPs. Measurement of the relaxivity was performed on a 1.4 T relaxometer and a 4.7 T small animal magnetic resonance scanner to estimate the effects of magnetic field strength. ROS was quantified by activated dichlorodihydrofluorescein diacetate fluorescence. Cell uptake of the NPs and RaST were monitored by fluorescence microscopy. Both 3 T and 4.7 T scanners were used to image the in vivo distribution of intravenously injected NPs in tumor-bearing mice. Results A simple colorimetric assay accurately determined both the loading and stability of the NPs compared with the expensive and complex ICP-MS method. Coating of the TiO2-Gd NPs with Tf stabilized the nanoconstruct and minimized aggregation. The TiO2-Gd-Tf maintained ROS-generating capability without inducing cell death at a wide range of concentrations but induced significant cell death under RaST conditions in the presence of F-18 radiolabeled 2-fluorodeoxyglucose. The longitudinal (r1 = 10.43 mM-1s-1) and transverse (r2 = 13.43 mM-1s-1) relaxivity of TiO2-Gd-Tf NPs were about twice and thrice, respectively, those of clinically used Gd contrast agent (Gd-DTPA; r1 = 3.77 mM-1s-1 and r2 = 5.51 mM-1s-1) at 1.4 T. While the r1 (8.13 mM-1s-1) reduced to about twice that of Gd-DTPA (4.89 mM-1s-1) at 4.7 T, the corresponding r2 (87.15 mM-1s-1) increased by a factor 22.6 compared to Gd-DTPA (r2 = 3.85). MRI of tumor-bearing mice injected with TiO2-Gd-Tf NPs tracked the NPs distribution and accumulation in tumors. Conclusion This work demonstrates that Arsenazo III colorimetric assay can substitute ICP-MS for determining the loading and stability of Gd-doped TiO2 NPs. The new nanoconstruct enabled RaST effect in cells, exhibited high relaxivity, and enhanced MRI contrast in tumors in vivo, paving the way for in vivo MRI-guided RaST.
Collapse
Affiliation(s)
- Lei Fang
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States
| | - Hengbo Huang
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States
| | - James D. Quirk
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Jie Zheng
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Duanwen Shen
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Brad Manion
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Matthew Mixdorf
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Partha Karmakar
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Gail P. Sudlow
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Rui Tang
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Samuel Achilefu
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States,Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, University of Texas Southwestern, Dallas, United States,Address correspondence to this author at the Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States;
| |
Collapse
|
4
|
Gonzalez de Vega R, Lockwood TE, Xu X, Gonzalez de Vega C, Scholz J, Horstmann M, Doble PA, Clases D. Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS. Anal Bioanal Chem 2022; 414:5671-5681. [PMID: 35482065 PMCID: PMC9242955 DOI: 10.1007/s00216-022-04052-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
The analysis of natural and anthropogenic nanomaterials (NMs) in the environment is challenging and requires methods capable to identify and characterise structures on the nanoscale regarding particle number concentrations (PNCs), elemental composition, size, and mass distributions. In this study, we employed single particle inductively coupled plasma-mass spectrometry (SP ICP-MS) to investigate the occurrence of NMs in the Melbourne area (Australia) across 63 locations. Poisson statistics were used to discriminate between signals from nanoparticulate matter and ionic background. TiO2-based NMs were frequently detected and corresponding NM signals were calibated with an automated data processing platform. Additionally, a method utilising a larger mass bandpass was developed to screen for particulate high-mass elements. This procedure identified Pb-based NMs in various samples. The effects of different environmental matrices consisting of fresh, brackish, or seawater were mitigated with an aerosol dilution method reducing the introduction of salt into the plasma and avoiding signal drift. Signals from TiO2- and Pb-based NMs were counted, integrated, and subsequently calibrated to determine PNCs as well as mass and size distributions. PNCs, mean sizes, particulate masses, and ionic background levels were compared across different locations and environments.
Collapse
Affiliation(s)
- Raquel Gonzalez de Vega
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Thomas E Lockwood
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Xiaoxue Xu
- School of Biomedical Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Claudia Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Johannes Scholz
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Maximilian Horstmann
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - David Clases
- Institute of Chemistry, University of Graz, 8010, Graz, Austria.
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
5
|
Huang Y, Lum JTS, Leung KSY. An integrated ICP-MS-based analytical approach to fractionate and characterize ionic and nanoparticulate Ce species. Anal Bioanal Chem 2022; 414:3397-3410. [PMID: 35129641 DOI: 10.1007/s00216-022-03958-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) are widely used in various fields, leading to concern about their effect on human health. When conducting in vivo investigations of CeO2 NPs, the challenge is to fractionate ionic Ce and CeO2 NPs and to characterize CeO2 NPs without changing their properties/state. To meet this challenge, we developed an integrated inductively coupled plasma-mass spectrometry (ICP-MS)-based analytical approach in which ultrafiltration is used to fractionate ionic and nanoparticulate Ce species while CeO2 NPs are characterized by single particle-ICP-MS (sp-ICP-MS). We used this technique to compare the effects of two sample pretreatment methods, alkaline and enzymatic pretreatments, on ionic Ce and CeO2 NPs. Results showed that enzymatic pretreatment was more efficient in extracting ionic Ce or CeO2 NPs from animal tissues. Moreover, results further showed that the properties/states of all ionic and nanoparticulate Ce species were well preserved. The rates of recovery of both species were over 85%; the size distribution of CeO2 NPs was comparable to that of original NPs. We then applied this analytical approach, including the enzymatic pretreatment and ICP-MS-based analytical techniques, to investigate the bioaccumulation and biotransformation of CeO2 NPs in mice. It was found that the thymus acts as a "holding station" in CeO2 NP translocation in vivo. CeO2 NP biotransformation was reported to be organ-specific. This is the first study to evaluate the impact of enzymatic and alkaline pretreatment on Ce species, namely ionic Ce and CeO2 NPs. This integrated ICP-MS-based analytical approach enables us to conduct in vivo biotransformation investigations of CeO2 NPs.
Collapse
Affiliation(s)
- Yingyan Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Judy Tsz-Shan Lum
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China.
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, People's Republic of China.
| |
Collapse
|
6
|
Moreno-Martín G, Gómez-Gómez B, León-González ME, Madrid Y. Characterization of AgNPs and AuNPs in sewage sludge by single particle inductively coupled plasma-mass spectrometry. Talanta 2022; 238:123033. [PMID: 34857351 DOI: 10.1016/j.talanta.2021.123033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
This study develops for the first time an analytical method for the characterization of silver and gold nanoparticles in sewage sludge. The evaluation of the effect of temperature, extracting agent and centrifugation speed and time on the extraction yield was carried out through a multifactorial analysis of variance which allows us to select 289 g, 5 min and 20 mM sodium pyrophosphate tetrabasic as optimal extraction conditions. Under these conditions, the analysis of the extract by single particle inductively coupled plasma-mass spectrometry provided recovery percentages of 70 ± 2% and 56 ± 1% for silver and gold nanoparticles, respectively. Moreover, the complementary results obtained upon analysis of these extracts by transmission electron microscopy and single particle inductively coupled plasma-mass spectrometry showed that the developed method did not modify the original size and shape of these nanoparticles during the extraction procedure. Size detection limits of 23 nm and 16 nm as well as number concentration limits of 3.12 × 109 particles kg-1 and 1.38 × 109 particles kg-1 were obtained for silver and gold nanoparticles, respectively. Moreover, a stability study of silver and gold nanoparticles in sewage sludge for 12 months showed differences between the two nanoparticle types. Although the sizes were not affected during the 12 months, silver nanoparticles underwent an oxidation process from 6 months onwards, which was reflected in an increase in the percentage of ionic silver from 14 ± 1% at 6 months to 24 ± 2% at 12 months. The developed methodology represents a simple, reliable and fast tool for detecting, quantifying and assessing the stability of nanoparticles in an important environmental sample such as sewage sludge.
Collapse
Affiliation(s)
- Gustavo Moreno-Martín
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Beatriz Gómez-Gómez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Maria Eugenia León-González
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Jreije I, Hadioui M, Wilkinson KJ. Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS. Talanta 2022; 238:123060. [PMID: 34801914 DOI: 10.1016/j.talanta.2021.123060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
With the significant increase in the production and use of nanoparticles (NP), concern is increasing over their release into their environment. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is emerging as one of the best techniques for detecting the very small NP at very low concentrations in natural waters. However, there is no unified protocol for the preparation of natural water samples for SP-ICP-MS analysis. In order to minimize nebulizer blockage, filtration is often used with the expectation that 0.45 μm membranes will not remove significant quantities of 1-100 nm NP. Nonetheless, there are limited data on its effect on the concentrations or size distributions of the NP. To that end, we examined the interactions between six different membrane filters and silver (Ag) and cerium oxide (CeO2) NP in aqueous samples. For Ag NP, the highest recoveries were observed for polypropylene membranes, where 55% of the pre-filtration NP were found in rainwater and 75% were found in river waters. For CeO2 NP, recoveries for the polypropylene membrane attained 60% in rainwater and 75% in river water. Recoveries could be increased to over 80% by pre-conditioning the filtration membranes with a multi-element solution. Similar recoveries were obtained when samples were centrifuged at low centrifugal forces (≤1000×g).
Collapse
Affiliation(s)
- Ibrahim Jreije
- Biophysical Environmental Chemistry Group, University of Montreal, P.O. Box 6128, Succ. Centre-Ville, Montreal, QC, Canada
| | - Madjid Hadioui
- Biophysical Environmental Chemistry Group, University of Montreal, P.O. Box 6128, Succ. Centre-Ville, Montreal, QC, Canada
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, University of Montreal, P.O. Box 6128, Succ. Centre-Ville, Montreal, QC, Canada.
| |
Collapse
|
8
|
Azimzada A, Jreije I, Hadioui M, Shaw P, Farner JM, Wilkinson KJ. Quantification and Characterization of Ti-, Ce-, and Ag-Nanoparticles in Global Surface Waters and Precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9836-9844. [PMID: 34181400 DOI: 10.1021/acs.est.1c00488] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanoparticle (NP) emissions to the environment are increasing as a result of anthropogenic activities, prompting concerns for ecosystems and human health. In order to evaluate the risk of NPs, it is necessary to know their concentrations in various environmental compartments on regional and global scales; however, these data have remained largely elusive due to the analytical difficulties of measuring NPs in complex natural matrices. Here, we measure NP concentrations and sizes for Ti-, Ce-, and Ag-containing NPs in numerous global surface waters and precipitation samples, and we provide insights into their compositions and origins (natural or anthropogenic). The results link NP occurrences and distributions to particle type, origin, and sampling location. Based on measurements from 46 sites across 13 countries, total Ti- and Ce-NP concentrations (regardless of origin) were often found to be within 104 to 107 NP mL-1, whereas Ag NPs exhibited sporadic occurrences with low concentrations generally up to 105 NP mL-1. This generally corresponded to mass concentrations of <1 ng L-1 for Ag-NPs, <100 ng L-1 for Ce-NPs, and <10 μg L-1 for Ti-NPs, given that measured sizes were often below 15 nm for Ce- and Ag-NPs and above 30 nm for Ti-NPs. In view of current toxicological data, the observed NP levels do not yet appear to exceed toxicity thresholds for the environment or human health; however, NPs of likely anthropogenic origins appear to be already substantial in certain areas, such as urban centers. This work lays the foundation for broader experimental NP surveys, which will be critical for reliable NP risk assessments and the regulation of nano-enabled products.
Collapse
Affiliation(s)
- Agil Azimzada
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Ibrahim Jreije
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Madjid Hadioui
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Phil Shaw
- Nu Instruments, Wrexham LL13 9XS, U.K
| | - Jeffrey M Farner
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|