1
|
Guo J, Yan W, Duan H, Wang D, Zhou Y, Feng D, Zheng Y, Zhou S, Liu G, Qin X. Therapeutic Effects of Natural Products on Liver Cancer and Their Potential Mechanisms. Nutrients 2024; 16:1642. [PMID: 38892575 PMCID: PMC11174683 DOI: 10.3390/nu16111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Jinhong Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Wenjie Yan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Hao Duan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Diandian Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Yaxi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Shiqi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Gaigai Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Xia Qin
- Graduate Department, Beijing Union University, Beijing 100101, China
| |
Collapse
|
2
|
Mohamed Azar KAH, Ezhilarasan D, Shree Harini K. Coleus vettiveroides ethanolic root extract induces cytotoxicity by intrinsic apoptosis in HepG2 cells. J Appl Toxicol 2024; 44:245-259. [PMID: 37661188 DOI: 10.1002/jat.4536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Hepatocellular carcinoma (HCC) contributes to more than 80% of all primary cancers globally and ranks fourth in cancer-related deaths, due to the lack of an effective, definite therapeutic drug. Coleus vettiveroides (CV) has been used in Indian traditional medicine to treat diabetes, liver ailments, skin diseases, leukoderma, and leprosy. This study investigates the anticancer effect of CV ethanolic root extract in HepG2 cells. HepG2 cells were treated with CV extract, and its cytotoxicity was analyzed by MTT assay. AO/EB staining, propidium iodide staining, DCFH-DA assay, phalloidine staining, flow cytometry, and qPCR studies were performed for ROS expression, apoptosis and cell cycle analysis. The phytochemical analysis confirmed the presence of quercetin and galangin in CV root extract. The results showed that CV inhibited the proliferation of HepG2 cells, with altered cellular and nuclear morphology. CV was also found to increase intracellular ROS levels and oxidative stress markers in HepG2 cells. CV significantly altered the actin microfilament distribution in HepG2 cells and caused cell cycle arrest at the sub G0 -G1 phase. CV also induced mitochondria-mediated apoptosis, as evidenced by increased expression of p53, Bax, cytochrome C, Apaf-1, PARP, caspase-3 and caspase-9, and downregulated Bcl-2 expression. Therefore, CV exerts its anticancer effect by inducing mitochondrial dysfunction, oxidative stress, cytoskeletal disorganization, cell cycle arrest, and mitochondria-mediated apoptosis, and it could be a potent therapeutic option for HCC.
Collapse
Affiliation(s)
- Kadmad Abdul Hameed Mohamed Azar
- Department of Pharmacology, Koppal Institute of Medical Sciences, Koppal, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
3
|
Chang KF, Lai HC, Lee SC, Huang XF, Huang YC, Chou TE, Hsiao CY, Tsai NM. The effects of patchouli alcohol and combination with cisplatin on proliferation, apoptosis and migration in B16F10 melanoma cells. J Cell Mol Med 2023; 27:1423-1435. [PMID: 37038620 PMCID: PMC10183711 DOI: 10.1111/jcmm.17745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
Melanoma is a highly metastatic cancer with a low incidence rate, but a high mortality rate. Patchouli alcohol (PA), a tricyclic sesquiterpene, is considered the main active component in Pogostemon cablin Benth, which improves wound healing and has anti-tumorigenic activity. However, the pharmacological action of PA on anti-melanoma remains unclear. Thus, the present study aimed to investigate the role of PA in the proliferation, cell cycle, apoptosis and migration of melanoma cells. These results indicated that PA selectively inhibited the proliferation of B16F10 cells in a dose- and time-dependent manner. It induced cell cycle arrest at the G0 /G1 phase and typical morphological changes in apoptosis, such as chromatin condensation, DNA fragmentation and apoptotic bodies. In addition, PA reduced the migratory ability of B16F10 cells by upregulating E-cadherin and downregulating p-Smad2/3, vimentin, MMP-2 and MMP-9 expression. PA was also found to strongly suppress tumour growth in vivo. Furthermore, PA combined with cisplatin synergistically inhibited colony formation and migration of B16F10 cells and attenuated the development of resistance to treatment. Therefore, the results of this study indicate that PA may play a pivotal role in inducing apoptosis and reducing the migration of melanoma cells, and may thus be a potential candidate for melanoma treatment.
Collapse
Affiliation(s)
- Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Hung-Chih Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
- Institute of Pharmacology, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Ya-Chih Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Tien-Erh Chou
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan, R.O.C
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Life-and-Death Studies, Nanhua University, Chiayi, Taiwan, R.O.C
| |
Collapse
|
4
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
5
|
Systemic pharmacological verification of Salvia miltiorrhiza-Ginseng Chinese herb pair in inhibiting spontaneous breast cancer metastasis. Biomed Pharmacother 2022; 156:113897. [DOI: 10.1016/j.biopha.2022.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
|
6
|
Zhu X, Chen X, Wang G, Lei D, Chen X, Lin K, Li M, Lin H, Li D, Zheng Q. Picropodophyllin Inhibits the Proliferation of Human Prostate Cancer DU145 and LNCaP Cells <i>via</i> ROS Production and PI3K/AKT Pathway Inhibition. Biol Pharm Bull 2022; 45:1027-1035. [DOI: 10.1248/bpb.b21-01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Xuejie Zhu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Xiaojie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Guoli Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Dan Lei
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Xiaoyu Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Kehao Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Haiyan Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| |
Collapse
|
7
|
Tu H, Wang W, Feng Y, Zhang L, Zhou H, Cheng C, Ji L, Cai Q, Feng Y. β-Patchoulene represses hypoxia-induced proliferation and epithelial-mesenchymal transition of liver cancer cells. Bioengineered 2022; 13:11907-11922. [PMID: 35546067 PMCID: PMC9275994 DOI: 10.1080/21655979.2022.2065945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor originating from liver epithelial cells with a high clinical mortality rate. β-Patchoulene (β-PAE) is a compound extracted from patchouli, which has analgesic, anti-inflammatory and antioxidant effects. This research aims to probe the impacts of β-PAE on hypoxia-induced HCC cell proliferation and epithelial-mesenchymal transition (EMT). Firstly, hypoxic injury models were constructed in HCC Huh-7 and MHCC97 cells, and the hypoxic injury cell models were then treated with different concentrations of β-PAE. The cell viability, proliferation, migration, invasion and apoptosis were checked by the cell counting kit-8 (CCK-8) assay, colony formation assay, Transwell assay, flow cytometry and terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. The expression of Survivin protein, EMT markers and the NF-κB/HIF-1α pathway was gauged by Western blot (WB) or cellular immunofluorescence or reverse transcription-polymerase chain reaction (RT-PCR). The in-vivo experiment was conducted to confirm the anti-tumor role of β-PAE. As a result, β-PAE abated hypoxia-induced HCC cell growth, proliferation, migration, invasion and EMT and facilitated apoptosis in vitro and in vivo dose-dependently. Further mechanism studies displayed that β-PAE inactivated the NF-κB/HIF-1α pathway, and HIF-1α activation significantly reversed the β-PAE-mediated tumor inhibition. β-PAE repressed the proliferation and EMT of hypoxia-induced HCC cells by choking the NF-κB/HIF-1α pathway, suggesting that β-PAE was a potential drug for HCC treatment.
Collapse
Affiliation(s)
- Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Linfei Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Caitao Cheng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Lei Ji
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| |
Collapse
|
8
|
Wang W, Chen Y, Kuo C, Tsai J, Hsu F, Chung J, Pan P. DNA
damage and
NF‐κB
inactivation implicate glycyrrhizic acid‐induced
G
1
phase arrest in hepatocellular carcinoma cells. J Food Biochem 2022; 46:e14128. [DOI: 10.1111/jfbc.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Wei‐Shu Wang
- Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
| | - Yu‐Shan Chen
- Department of Radiation Oncology Show Chwan Memorial Hospital Changhua Taiwan
| | - Chen‐Yu Kuo
- Division of Gastroenterology, Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
| | - Jai‐Jen Tsai
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Division of Gastroenterology, Department of Medicine National Yang Ming Chiao Tung University Hospital Yilan Taiwan
- Department of Nursing Cardinal Tien Junior College of Healthcare and Management New Taipei City Taiwan
| | - Fei‐Ting Hsu
- Department of Biological Science and Technology China Medical University Taichung Taiwan
| | - Jing‐Gung Chung
- Department of Biological Science and Technology China Medical University Taichung Taiwan
- Department of Medical Laboratory and Biotechnology Asia University Taichung Taiwan
| | - Po‐Jung Pan
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Physical Medicine and Rehabilitation National Yang Ming Chiao Tung University Hospital Yilan Taiwan
| |
Collapse
|
9
|
Are Ancestral Medical Practices the Future Solution to Today's Medical Problems? Molecules 2021; 26:molecules26154701. [PMID: 34361852 PMCID: PMC8348408 DOI: 10.3390/molecules26154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
|