1
|
Sukpaita T, Chirachanchai S, Chanamuangkon T, Pimkhaokham A, Ampornaramveth RS. Alveolar ridge preservation in rat tooth extraction model by chitosan-derived epigenetic modulation scaffold. J Prosthodont Res 2024; 68:299-309. [PMID: 37438120 DOI: 10.2186/jpr.jpr_d_23_00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
PURPOSE Alveolar ridge preservation is a surgical technique used to prevent dimensional changes in the alveolar bone by dressing biomaterials in the extraction socket. Recently, a chitosan biphasic calcium phosphate loaded with trichostatin A (CS/BCP/TSA) scaffold was introduced as an excellent bone-regeneration material. This study aimed to explore the biological properties of released trichostatin A (TSA) and evaluate the potential of the CS/BCP/TSA scaffold in preserving the alveolar ridge in a rat tooth extraction model. METHODS In vitro biocompatibility, histone deacetylase (HDAC) activity, and osteogenic differentiation of MC3T3-E1 cells were tested. For in vivo studies, the maxillary first molars (M1) of Wistar rats were extracted, and alveolar ridge preservation was performed using a CS/BCP/TSA scaffold or commercial bone graft. Micro-Computed Tomography (micro-CT), polyfluorochrome labeling, and histological analysis were used to evaluate the ridge-preservation ability. RESULTS The released TSA was cytocompatible. Inhibition of histone deacetylase (HDAC) activity and induction of osteogenic differentiation in MC3T3-E1 cells were confirmed. The socket dressing with the CS/BCP/TSA scaffold showed increased socket bone fill and preserved the buccal and middle aspects of the alveolar ridge compared with the conventional graft. Further analysis of the bone regeneration ability by histomorphometric and histological analyses demonstrated that CS/BCP/TSA showed a significantly higher potential to induce bone formation and complete healing in the extraction socket than the other groups. CONCLUSIONS The CS/BCP/TSA scaffold is a novel candidate for alveolar ridge preservation.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Oral Surgery, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Suwabun Chirachanchai
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| | - Theerapat Chanamuangkon
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ruchanee Salingcarnboriboon Ampornaramveth
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Understanding the Role of Surface Modification of Randomized Trabecular Titanium Structures in Bone Tissue Regeneration: An Experimental Study. Medicina (B Aires) 2022; 58:medicina58020315. [PMID: 35208638 PMCID: PMC8879828 DOI: 10.3390/medicina58020315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Objectives: Three-dimensional (3D) metallic trabecular structures made by additive manufacturing (AM) technologies promote new bone formation and osteointegration. Surface modifications by chemical treatments can improve the osteoconductive properties of metallic structures. An in vivo study in sheep was conducted to assess the bone response to randomized trabecular titanium structures that underwent a surface modification by chemical treatment compared to the bone response to the untreated specimens. Material and Methods: Sixteen specimens with a randomized trabecular titanium structure were implanted in the spongious bone of the distal femur and proximal tibia and the cortical bone of the tibial diaphysis of two sheep. Of them, eight implants had undergone a chemical treatment (treated) and were compared to eight implants with the same structure but native surfaces (native). The sheep were sacrificed at 6 weeks. Surface features of the lattice structures (native and treated) were analyzed using a 3D non-contact profilometer. Compression tests of 18 lattice cubes were performed to investigate the mechanical properties of the two structures. Excellent biocompatibility for the trabecular structures was demonstrated in vitro using a cell mouse fibroblast culture. Histomorphometric analysis was performed to evaluate bone implant contact and bone ingrowth. Results: A compression test of lattice cubic specimens revealed a comparable maximum compressive strength value between the two tested groups (5099 N for native surfaces; 5558 N for treated surfaces; p > 0.05). Compared to native surfaces, a homogenous formation of micropores was observed on the surface of most trabeculae that increased the surface roughness of the treated specimens (4.3 versus 3.2 µm). The cellular viability of cells seeded on three-dimensional structure surfaces increased over time compared to that on plastic surfaces. The histomorphometric data revealed a similar behavior and response in spongious and cortical bone formation. The percentage of the implant surface in direct contact with the regenerated bone matrix (BIC) was not significantly different between the two groups either in the spongious bone (BIC: 27% for treated specimens versus 30% for native samples) or in the cortical bone (BIC: 75% for treated specimens versus 77% for native samples). Conclusions: The results of this study reveal rapid osseointegration and excellent biocompatibility for the trabecular structure regardless of surface treatment using AM technologies. The application of implant surfaces can be optimized to achieve a strong press-fit and stability, overcoming the demand for additional chemical surface treatments.
Collapse
|
3
|
Bungthong W, Amornsettachai P, Luangchana P, Chuenjitkuntaworn B, Suphangul S. Bone Dimensional Change Following Immediate Implant Placement in Posterior Teeth with CBCT: A 6-Month Prospective Clinical Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030608. [PMID: 35163869 PMCID: PMC8838578 DOI: 10.3390/molecules27030608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
This prospective clinical study aimed to evaluate the peri-implant hard tissue dimensional change at 6 months of immediate implant placement with bone graft materials in the posterior area using cone-beam computed tomography (CBCT). Twelve dental implants were placed concurrently following tooth extraction in the posterior area and filled with xenograft particles. The CBCT images were taken immediately after surgical procedures and then at 6 months follow-up. To evaluate the hard tissue changes, the vertical and horizontal bone thickness were analyzed and measured using ImageJ software. Paired t-test or Wilcoxon match-pair signed-rank test was done to analyze the changes of hard tissue values at the same level between immediately and 6 months following immediate implant placement. Independent t-test or Mann-Whitney U test was used to analyze the dimensional change in the vertical and horizontal direction in buccal and lingual aspects. The level of significance was set at p value = 0.05. All implants were successfully osseointegrated. At 6 months follow-up, the vertical bone change at the buccal aspect was -0.69 mm and at the lingual aspect -0.39 mm. For horizontal bone thickness, the bone dimensional changes at 0, 1, 5, and 9 mm levels from the implant platform were -0.62 mm, -0.70 mm, -0.24 mm, and -0.22 mm, respectively. A significant bone reduction was observed in all measurement levels during the 6 months after implant placement (p value < 0.05). It was noted that even with bone grafting, a decrease in bone thickness was seen following the immediate implant placement. Therefore, this technique can be an alternative method to place the implant in the posterior area.
Collapse
Affiliation(s)
- Witchayani Bungthong
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
| | - Parinya Amornsettachai
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
| | - Penporn Luangchana
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Boontharika Chuenjitkuntaworn
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
| | - Suphachai Suphangul
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand; (W.B.); (P.A.); (B.C.)
- Correspondence: ; Tel.: +66-2200-7853
| |
Collapse
|
4
|
Kunrath MF, Muradás TC, Penha N, Campos MM. Innovative surfaces and alloys for dental implants: What about biointerface-safety concerns? Dent Mater 2021; 37:1447-1462. [PMID: 34426019 DOI: 10.1016/j.dental.2021.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The present review article aimed to discuss the recent technologies employed for the development of dental implants, mainly regarding innovative surface treatments and alternative alloys, emphasizing the bio-tribocorrosion processes. METHODS An electronic search applying specific MeSH terms was carried out in PubMed and Google Scholar databases to collect data until August 2021, considering basic, pre-clinical, clinical and review studies. The relevant articles (n=111), focused on innovative surface treatments for dental implants and their potential undesirable biological effects, were selected and explored. RESULTS Novel texturization methodologies for dental implants clearly provided superficial and structural atomic alterations in micro- and nanoscale, promoting different mechanical-chemical interactions when applied in the clinical set. Some particulate metals released from implant surfaces, their degradation products and/or contaminants exhibited local and systemic reactions after implant installation and osseointegration, contributing to unexpected treatment drawbacks and adverse effects. Therefore, there is an urgent need for development of pre-clinical and clinical platforms for screening dental implant devices, to predict the biointerface reactions as early as possible during the development phases. SIGNIFICANCE Modern surface treatments and innovative alloys developed for dental implants are not completely understood regarding their integrity during long-term clinical function, especially when considering the bio-tribocorrosion process. From this review, it is possible to assume that degradation and contamination of dental surfaces might be associated within peri-implant inflammation and cumulative long-lasting systemic toxicity. The in-depth comprehension of the biointerface modifications on these novel surface treatments might preclude unnecessary expenses and postoperative complications involving osseointegration failures.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thaís C Muradás
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Maria M Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|