1
|
Manzoor S, Ali S, Mansha M, Sadaqat M, Ashiq MN, Tahir MN, Khan SA. Exploring Nanomaterials for Hydrogen Storage: Advances, Challenges, and Perspectives. Chem Asian J 2024; 19:e202400365. [PMID: 38705846 DOI: 10.1002/asia.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Hydrogen energy heralded for its environmentally friendly, renewable, efficient, and cost-effective attributes, stands poised as the primary alternative to fossil fuels in the future. Despite its great potential, the low volumetric density presents a formidable challenge in hydrogen storage. Addressing this challenge necessitates exploring effective storage techniques for a sustainable hydrogen economy. Solid-state hydrogen storage in nanomaterials (physically or chemically) holds promise for achieving large-scale hydrogen storage applications. Such approaches offer benefits, including safety, compactness, lightness, reversibility, and efficient generation of pure hydrogen fuel under mild conditions. This article presents solid-state nanomaterials, specifically nanoporous carbons (activated carbon, carbon fibers), metal-organic frameworks, covalently connected frameworks, nanoporous organic polymers, and nanoscale metal hydrides. Furthermore, new developments in hydrogen fuel cell technology for stationary and mobile applications have been demonstrated. The review outlines significant advancements thus far, identifies key barriers to practical implementation, and presents a perspective for future sustainable energy research. It concludes with recommendations to enhance hydrogen storage performance for cost-effective and long-lasting utilization.
Collapse
Affiliation(s)
- Sumaira Manzoor
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Maira Sadaqat
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Chaturvedi AK, Shukla RK, Volla CMR. Rh(iii)-catalyzed sp 3/sp 2-C-H heteroarylations via cascade C-H activation and cyclization. Chem Sci 2024; 15:6544-6551. [PMID: 38699273 PMCID: PMC11062110 DOI: 10.1039/d3sc06955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
The development of an efficient strategy for facile access to quinoline-based bis-heterocycles holds paramount importance in medicinal chemistry. Herein, we describe a unified approach for accessing 8-(indol-3-yl)methyl-quinolines by integrating Cp*Rh(iii)-catalyzed C(sp3)-H bond activation of 8-methylquinolines followed by nucleophilic cyclization with o-ethynylaniline derivatives. Remarkably, methoxybiaryl ynones under similar catalytic conditions delivered quinoline tethered spiro[5.5]enone scaffolds via a dearomative 6-endo-dig C-cyclization. Moreover, leveraging this method for C8(sp2)-H bond activation of quinoline-N-oxide furnished biologically relevant oxindolyl-quinolines. This reaction proceeds via C(sp2)-H bond activation, regioselective alkyne insertion, oxygen-atom-transfer (OAT) and intramolecular nucleophilic cyclization in a cascade manner. One C-C, one C-N and one C[double bond, length as m-dash]O bond were created with concomitant formation of a quaternary center.
Collapse
Affiliation(s)
- Atul K Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
3
|
Lim J, Guo M, Choi S, Miller SJ, Anslyn EV. High-throughput determination of enantiopurity in atroposelective synthesis of aryl triazoles. Chem Sci 2023; 14:5992-5999. [PMID: 37293656 PMCID: PMC10246677 DOI: 10.1039/d3sc01559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Atropisomeric scaffolds are a common design element found in pharmaceuticals, many deriving from an N-C axis of chirality. The handedness associated with atropisomeric drugs is oftentimes crucial for their efficacy and/or safety. With the increased use of high-throughput screening (HTS) for drug discovery, the need for rapid enantiomeric excess (ee) analysis is needed to keep up with the fast workflow. Here, we describe a circular dichroism (CD) based assay that could be applied to the ee determination of N-C axially chiral triazole derivatives. Analytical samples for CD were prepared from crude mixtures by three sequential steps: liquid-liquid extraction (LLE), a wash-elute, and complexation with Cu(ii) triflate. The initial ee measurement of five samples of atropisomer 2 was conducted by the use of a CD spectropolarimeter with a 6-position cell changer, resulting in errors of less than 1% ee. High-throughput ee determination was performed on a CD plate reader using a 96-well plate. A total of 28 atropisomeric samples (14 for 2 and 14 for 3) were screened for ee. The CD readings were completed in 60 seconds with average absolute errors of ±7.2% and 5.7% ee for 2 and 3, respectively.
Collapse
Affiliation(s)
- Jongdoo Lim
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Melody Guo
- Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
| | - Sooyun Choi
- Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
| | - Scott J Miller
- Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
4
|
Lantz L, Shirani H, Ghetti B, Vidal R, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands for Histological Multiplex Spectral Detection of Distinct Protein Aggregates in Alzheimer's Disease. Chemistry 2023; 29:e202203568. [PMID: 36645413 PMCID: PMC10101888 DOI: 10.1002/chem.202203568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
The aggregation and accumulation of proteins in the brain is the defining feature of many devastating neurodegenerative diseases. The development of fluorescent ligands that bind to these accumulations, or deposits, is essential for the characterization of these neuropathological lesions. We report the synthesis of donor-acceptor-donor (D-A-D) thiophene-based ligands with different emission properties. The D-A-D ligands displayed selectivity towards distinct disease-associated protein deposits in histological sections from postmortem brain tissue of individuals affected by Alzheimer's disease (AD). The ability of the ligands to selectively identify AD-associated pathological alterations, such as deposits composed of aggregates of the amyloid-β (Aβ) peptide or tau, was reduced when the chemical composition of the ligands was altered. When combining the D-A-D ligands with conventional thiophene-based ligands, superior spectral separation of distinct protein aggregates in AD tissue sections was obtained. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species, as well as offer novel strategies for developing multiplex fluorescence detection of protein aggregates in tissue sections.
Collapse
Affiliation(s)
- Linda Lantz
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202, Indiana, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202, Indiana, USA
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
5
|
Yu T, Wang Y, Dong Y, Han D, Liu N, Wang B, Tang Y, Wei H. Dehydrogenative Syntheses of Biazoles via a "Pre-Join" Approach. JACS AU 2023; 3:80-85. [PMID: 36711107 PMCID: PMC9875268 DOI: 10.1021/jacsau.2c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The structural motif of biazoles is the predominant substructure of many natural products, pharmaceuticals, and organic materials. Considerable efforts have focused on synthesizing these compounds; however, a limited number of processes have been reported for the efficient formation of biazoles. Herein, we report a "pre-join" approach for the dehydrogenative synthesis of biazoles, which are challenging to prepare using conventional methods. A bench-stable and easily synthesized pyrazine-based group is critical for this transformation. This strategy enables the homocoupling of biazoles and the heterocoupling of two different azoles. Due to the broad substrate scope, this strategy exhibits potential for use in other fields, such as medicine, materials, and natural product chemistry.
Collapse
Affiliation(s)
- Tianyang Yu
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, People’s Republic of China
| | - Yan Wang
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, People’s Republic of China
| | - Yaqun Dong
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Derui Han
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, People’s Republic of China
| | - Ning Liu
- Xi’an
Modern Chemistry Research Institute, Xi’an 710065, People’s Republic of China
| | - Bozhou Wang
- Xi’an
Modern Chemistry Research Institute, Xi’an 710065, People’s Republic of China
| | - Yongxing Tang
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Hao Wei
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, People’s Republic of China
| |
Collapse
|
6
|
Nishiwaki N, Iwai K, Hatayama N. Simultaneous Denitrative C–C Bond Formation and Construction of Pyrazole Ring Leading to 1,1'-Diphenyl-4,4'-bipyrazole. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Quantum-chemical study of organic reaction mechanisms. XI.*1 Biologically active 4-substituted 1,2,4-triazoles from diformylhydrazine and aminophenols. Struct Chem 2022. [DOI: 10.1007/s11224-022-01969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Marchenko RD, Sukhikh TS, Ryadun AA, Potapov AS. Synthesis, Crystal Structure, and Luminescence of Cadmium(II) and Silver(I) Coordination Polymers Based on 1,3-Bis(1,2,4-triazol-1-yl)adamantane. Molecules 2021; 26:molecules26175400. [PMID: 34500832 PMCID: PMC8434004 DOI: 10.3390/molecules26175400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/30/2023] Open
Abstract
Coordination polymers with a new rigid ligand 1,3-bis(1,2,4-triazol-1-yl)adamantane (L) were prepared by its reaction with cadmium(II) or silver(I) nitrates. Crystal structure of the coordination polymers was determined using single-crystal X-ray diffraction analysis. Silver formed two-dimensional coordination polymer [Ag(L)NO3]n, in which metal ions are linked by 1,3-bis(1,2,4-triazol-1-yl)adamantane ligands, coordinated by nitrogen atoms at positions 2 and 4 of 1,2,4-triazole rings. Layers of the coordination polymer consist of rare 18- and 30-membered {Ag2L2} and {Ag4L4} metallocycles. Cadmium(II) nitrate formed two kinds of one-dimensional coordination polymers depending on the metal-to-ligand ratio used in the synthesis. Coordination polymer [Cd(L)2(NO3)2]n was obtained in case of a 1:2 M:L ratio, while for M:L = 2:1 product {[Cd(L)(NO3)2(CH3OH)]·0.5CH3OH}n was isolated. All coordination polymers demonstrated ligand-centered emission near 450 nm upon excitation at 370 nm.
Collapse
Affiliation(s)
- Roman D. Marchenko
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia;
| | - Taisiya S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.S.S.); (A.A.R.)
| | - Alexey A. Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.S.S.); (A.A.R.)
| | - Andrei S. Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.S.S.); (A.A.R.)
- Correspondence: ; Tel.: +7-(383)-330-94-90
| |
Collapse
|
9
|
Silva VLM, Silva AMS. Special Issue "Recent Advances in the Synthesis, Functionalization and Applications of Pyrazole-Type Compounds". Molecules 2021; 26:molecules26164989. [PMID: 34443577 PMCID: PMC8401411 DOI: 10.3390/molecules26164989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Vera L. M. Silva
- Correspondence: (V.L.M.S.); (A.M.S.S.); Tel.: +351-234-370704 (V.L.M.S.); +351-234-370714 (A.M.S.S.)
| | - Artur M. S. Silva
- Correspondence: (V.L.M.S.); (A.M.S.S.); Tel.: +351-234-370704 (V.L.M.S.); +351-234-370714 (A.M.S.S.)
| |
Collapse
|
10
|
One‐pot Synthesis of Substituted Pyrazoles from Propargyl Alcohols via Cyclocondensation of in situ‐Generated α‐Iodo Enones/Enals and Hydrazine Hydrate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Rearrangements of polyaza(oxa-,thia-)heterocyclic carbanions in organic synthesis. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|