1
|
Hwang YS, Yoon HR, Park HM, Jang JP, Park JH, Park SH, Lim JS, Cho HJ, Lee HG. Protective Effects of Crotonis Semen Extract against Sepsis through NF-κB Pathway Inhibition. Int J Mol Sci 2024; 25:10089. [PMID: 39337575 PMCID: PMC11432241 DOI: 10.3390/ijms251810089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is an inflammatory condition causing organ failure due to an uncontrolled immune response to infection and remains a significant challenge. Crotonis Semen has displayed various pharmacological effects, yet its potential in protecting against sepsis and the mechanisms involved remains largely unclear. Here, we explored the antiseptic properties of Crotons Semen extract (CSE) in both LPS-stimulated J774 macrophages and mice subjected to sepsis through Cecal ligation and Puncture (CLP) or LPS induction. We found that CSE enhanced survival rates in mouse models with acute sepsis induced by CLP operation and LPS injection. Administering CSE also reduced levels of enzymes indicating organ damage, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK), in septic mice. Furthermore, CSE lowered the serum levels of inflammatory mediators and cytokines, such as NO, TNF-α, IL-1β, and IL-6, in septic mice. In LPS-stimulated J774 macrophages, CSE reduced the expression of pro-inflammatory proteins, including iNOS and COX-2. Moreover, CSE inhibited the phosphorylation of IκBα and IKK, key components of the NF-κB signaling pathway, thereby reducing inflammatory mediators and cytokines. These results demonstrate CSE's protective effects against sepsis through NF-κB pathway disruption, indicating its potential as a therapeutic option for acute inflammatory conditions.
Collapse
Affiliation(s)
- Yo Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyo-Min Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jong Seok Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
3
|
Jha AK, Khalid MA, Labh SN. In Vitro Antioxidant and Antibacterial Activities of Medicinal Flower Laligurans Rhododendron arboreum Collected from Kathmandu Valley, Nepal. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6073042. [PMID: 39044802 PMCID: PMC11265945 DOI: 10.1155/2024/6073042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/25/2024]
Abstract
Rhododendron arboreum, known as Nepal's national flower and belonging to the Ericaceae family, thrives throughout the Himalayan region. This study investigates the antioxidant and antimicrobial potential of Rhododendron arboreum flowers. Three different extracts were prepared at concentrations ranging from 10 to 640 μg/mL and assessed for their total phenolic content (TPC), total flavonoid content (TFC), and DPPH radical scavenging activity. Results showed significant accumulation of antioxidant compounds (P < 0.05), with TPC levels of 37.78, 67.29, and 53.46 mg GAE/g and TFC values of 49.46, 67.46, and 65.71 mg QE/g for LGP, LGE, and LGA at 640 μg/mL, respectively. DPPH activity was highest in LGE (96.33%), followed by LGA (87.11%) and LGP (76.59%), compared to the standard (77.38%). The antibacterial properties were significant against Aeromonas hydrophila, Staphylococcus aureus, and Escherichia coli at 100% concentration, with inhibition rates of 15%, 16%, and 17% for LGP, LGE, and LGA, respectively. These findings indicate that Rhododendron arboreum petals, rich in bioactive compounds, possess strong antioxidant and antibacterial properties, making them potential candidates for developing cost-effective therapeutic formulations. Further research should focus on isolating specific bioactive compounds and understanding their molecular mechanisms to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Anil Kumar Jha
- Department of Environment ScienceIntegral University, Kursi Road 226026, Lucknow, Uttar Pradesh, India
| | - Monowar Alam Khalid
- Department of Environment ScienceIntegral University, Kursi Road 226026, Lucknow, Uttar Pradesh, India
| | - Shyam Narayan Labh
- Aquaculture Research UnitAmrit Science CampusTribhuvan University, Kathmandu 44600, Nepal
| |
Collapse
|
4
|
Liu H, Peng XG, Gao R, Yang K, Zhao YB. Comparative analysis of noise and music exposure on inflammatory responses on lipopolysaccharide-induced septic rats. Hum Exp Toxicol 2024; 43:9603271241282584. [PMID: 39240701 DOI: 10.1177/09603271241282584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
OBJECTIVE Environmental factors such as noise and music can significantly impact physiological responses, including inflammation. This study explored how environmental factors like noise and music affect lipopolysaccharide (LPS)-induced inflammation, with a focus on systemic and organ-specific responses. MATERIALS AND METHODS 24 Wistar rats were divided into four groups (n = 6 per group): Control group, LPS group, noise-exposed group, and music-exposed group. All rats, except for the Control group, received 10 mg/kg LPS intraperitoneally. The rats in the noise-exposed group were exposed to 95 dB noise, and the music-exposed group listened to Mozart's K. 448 music (65-75 dB) for 1 h daily over 7 days. An enzyme-linked immunosorbent assay was utilized to detect the levels of inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in serum and tissues (lung, liver, and kidney). Western blot examined the phosphorylation levels of nuclear factor-κB (NF-κB) p65 in organ tissues. RESULTS Compared with the Control group, LPS-induced sepsis rats displayed a significant increase in the levels of TNF-α and IL-1β in serum, lung, liver, and kidney tissues, as well as a remarkable elevation in the p-NF-κB p65 protein expression in lung, liver, and kidney tissues. Noise exposure further amplified these inflammatory markers, while music exposure reduced them in LPS-induced sepsis rats. CONCLUSION Noise exposure exacerbates inflammation by activating the NF-κB pathway, leading to the up-regulation of inflammatory markers during sepsis. On the contrary, music exposure inhibits NF-κB signaling, indicating a potential therapeutic effect in reducing inflammation.
Collapse
Affiliation(s)
- Hu Liu
- Department of Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Xing-Guo Peng
- Department of Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Ran Gao
- Department of Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Kai Yang
- Department of Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Hubei, China
| | - Yan-Bo Zhao
- Department of Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Hubei, China
| |
Collapse
|
5
|
Zhao ZZ, Zhang J, Hong Z, Bao WL, Zhou LS, Liu Y, Chen DF, Lu Y. Structural Characterization and Anti-inflammatory Activities of Anticomplementary Polysaccharides from Rhododendron principis. PLANTA MEDICA 2023; 89:952-963. [PMID: 36977490 DOI: 10.1055/a-2063-5595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rhododendron principis leaves have been used as "Dama", a Traditional Tibetan Medicine for treating inflammatory diseases. R. principis crude polysaccharides with anticomplementary activity demonstrated promising anti-inflammatory effects on acute lung injury induced by lipopolysaccharide. R. principis crude polysaccharides significantly decreased the levels of TNF-α and interleukin-6 in both serum and blood and bronchoalveolar lavage fluid in lipopolysaccharide-induced acute lung injury mice by intragastric administration (100 mg/kg). A heteropolysaccharide, ZNDHP, was obtained from R. principis crude polysaccharides with successive anticomplementary activity-guided separation. ZNDHP was characterized as a branched neutral polysaccharide with a backbone composed of → 2)-β-Glcp-(1→, → 2,6)-α-Glcp-(1→, → 6,3)-β-Galp-(1→, → 2,6)-α-Galp-(1→, → 6,2)-β-Glcp-(1→, → 4)-α-Glcp-(1→, → 5)-β-Araf-(1→, → 3,5)-α-Araf-(1→, and → 4,6)-β-Manp-(1→, and the backbone structure was further confirmed by partial acid hydrolysis. In addition to anticomplementary and antioxidant activities, ZNDHP exhibited potent anti-inflammatory activity by significantly inhibiting the secretion of nitric oxide, TNF-α, interleukin-6, and interleukin-1β of lipopolysaccharide-treated RAW 264.7 cells. However, all of these activities decreased greatly after partially hydrolyzing, indicating the importance of the multibranched structure for its bioactivity. Therefore, ZNDHP might be an important component of R. principis for treating inflammation.
Collapse
Affiliation(s)
- Zhi-Zhi Zhao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Zhang
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhou Hong
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wei-Lian Bao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Li-Shuang Zhou
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yang Liu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dao-Feng Chen
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Wang J, Zhang J, Guo H, Cheng Q, Abbas Z, Tong Y, Yang T, Zhou Y, Zhang H, Wei X, Si D, Zhang R. Optimization of Exopolysaccharide Produced by Lactobacillus plantarum R301 and Its Antioxidant and Anti-Inflammatory Activities. Foods 2023; 12:2481. [PMID: 37444218 DOI: 10.3390/foods12132481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the yield of exopolysaccharide (EPS) from Lactobacillus plantarum R301 was optimized using a single-factor experiment and response surface methodology (RSM). After optimization, the EPS yield was increased with a fold-change of 0.85. The significant factors affecting EPS production, as determined through a Plackett-Burman design and Central Composite Design (CCD), were MgSO4 concentration, initial pH, and inoculation size. The maximum yield was 97.85 mg/mL under the condition of 0.01% MgSO4, an initial pH 7.4, and 6.4% of the inoculation size. In addition, the EPS exhibited strong antioxidant activity, as demonstrated by its ability to scavenge DPPH, ABTS, and hydroxyl radicals. The scavenging rate was up to 100% at concentrations of 4 mg/mL, 1 mg/mL, and 2 mg/mL, respectively. Moreover, the EPS also exhibited reducing power, which was about 30% that of ascorbic acid when both tended to be stable with the increased concentration. These results suggest that L. plantarum R301 EPS possesses different antioxidant mechanisms and warrants further investigation. In addition to its antioxidant activity, the EPS also demonstrated good anti-inflammatory activity by inhibiting the inflammation induced by lipopolysaccharide (LPS) in RAW 264.7 cells, which could decrease nitric oxide (NO) production and expression of the proinflammatory cytokine Il-6. These findings suggest that L. plantarum R301 EPS could be used as a potential multifunctional food additive in the food industry.
Collapse
Affiliation(s)
- Junyong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Henan Guo
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiang Cheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zaheer Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yichen Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haosen Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Lin TY, Lo HC, Qiu WL, Chao CH, Lu MK, Hsu HY. Biochemical characterization and anti-cancer activity of tangential flow filtration system assisted purification of fucoglucan from Laminaria japonica. Int J Biol Macromol 2023; 227:1-9. [PMID: 36528139 DOI: 10.1016/j.ijbiomac.2022.12.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Polysaccharide from Laminaria japonica (LJPS) exhibits multiple biological functions. However, we found that crude LJPS doesn't show good anti-lung cancer activity in this study. We therefore used tangential flow filtration (TFF) system to optimize the anticancer activity of LJPS. We divided the crude LJPS into two fractions by TFF system with a 10 kDa filter and denoted as retentate (10K-R) and filtration (10K-F). The chemical assay revealed that the main molecular mass of 10K-R and 10K-F is about 985 and 3 kDa, respectively. The main components of 10K-R include fucose (19.3 %), and glucose (59.5 %); while glucose (88.6 %) is a major component of 10K-F. Biological functions showed that 10K-R but not 10K-F inhibited the viability and mobility of cancer cells. 10K-R downregulated expressions of transforming growth factor β receptor and Slug, and inhibited intracellular signaling molecules, including FAK, AKT, ERK1/2, and Smad2. This study is the first concept to purify the polysaccharide by TFF system and showed the potential mechanism of 10K-R inhibited cancer cells.
Collapse
Affiliation(s)
- Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Lun Qiu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| | - Hsien-Yeh Hsu
- Institute of Taiwan Fucoidan Development, Taipei, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Effects of Dietary Ferulic Acid Supplementation on Hepatic Injuries in Tianfu Broilers Challenged with Lipopolysaccharide. Toxins (Basel) 2022; 14:toxins14030227. [PMID: 35324724 PMCID: PMC8955363 DOI: 10.3390/toxins14030227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that can cause an imbalance between the oxidation and antioxidant defense systems and then induces hepatic damages. Ferulic acid (FA) has multiple biological functions including antibacterial and antioxidant activities; however, the effect of FA on lipopolysaccharide-induced hepatic injury remains unknown. The purpose of this study was to investigate the mechanism of action of dietary Ferulic acid against Lipopolysaccharide-induced hepatic injuries in Tianfu broiler chickens. The results showed that supplementation of FA in daily feed increased body weight (BW) and decreased the feed conversion ratio (FCR) in LPS treatment broilers significantly (p < 0.05). Additionally, supplement of FA alleviated histological changes and apoptosis of hepatocytes in LPS treatment broilers. Supplement of FA significantly decreases the activities of ROS. Interestingly, the levels of antioxidant parameters including total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and glutathione (GSH) in LPS group were significantly increased by the FA supplementation (p < 0.05). Nevertheless, administration of LPS to broilers decreased the expressions of Nrf2, NQO1, SOD, GSH-Px, CAT and Bcl-2, whereas it increased the expressions of Bax and Caspase-3 (p < 0.05). Moreover, the expressions of Nrf2, NQO1, SOD, CAT, Bcl-2 were significantly upregulated and Caspase-3 were significantly downregulated in the FL group when compared to LPS group (p < 0.05). In conclusion, supplementation of FA in daily feed improves growth performance and alleviates LPS-induced oxidative stress, histopathologic changes, and apoptosis of hepatocytes in Tianfu broilers.
Collapse
|
9
|
Attiq A, Jalil J, Husain K, Mohamad HF, Ahmad A. Luteolin and apigenin derived glycosides from Alphonsea elliptica abrogate LPS-induced inflammatory responses in human plasma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114120. [PMID: 33857595 DOI: 10.1016/j.jep.2021.114120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous Alphonsea species including Alphonsea elliptica (mempisang) leaves and fruits are indigenously used in inflammatory conditions such as postpartum swelling and rheumatism in southeast Asian countries. In our previous in-vitro findings, A. elliptica methanol extract exhibited platelet-activating factor inhibition, suggesting the presence of phyto-constituents with anti-inflammatory potential. AIM OF THE STUDY However, so far there is no literature available on the anti-inflammatory activity of this species. Henceforth, based on the above background and our previous laboratory findings, we hypothesize that phytoconstituents of A. elliptica could possess anti-inflammatory potential against inflammatory mediators including prostaglandin-E2 (PGE2), cyclooxegenase-2 (COX-2) and cytokines (IL-1β and IL-6). MATERIALS AND METHODS Vacuum and column chromatography techniques were employed for the isolation of phytoconstituents. The structure elucidation was carried out using HRESI-MS, 1H and 13C-NMR analysis and compared with the published literature. For cytotoxicity analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed on peripheral blood mononuclear cells. In-vitro anti-inflammatory activities were evaluated against the levels of PGE2, COX-2, IL-1β and IL-6 in lipopolysaccharide (LPS)-induced human plasma using enzyme-linked immunosorbent assay and radioimmunoassay. RESULTS Unprecedentedly, chromatographic purification of methanolic leaves extract afforded five flavones namely vitexin, isovitexin, orientin, isoorientin, schaftoside with three flavanols; kaempferol, myricetin and rutin from A elliptica. In cell viability analysis, isolates did not present cytotoxicity up to 50 μM. In anti-inflammatory evaluation, orientin and isoorientin exhibited strong (≥70%), while isovitexin and vitexin produced strong to moderate (50-69%) PGE2, COX-2, IL-1β and IL-6 inhibition at 25 and 50 μM. Isoorientin, orientin, isovitexin, and vitexin showed significant (p < 0.05) and concentration-dependent PGE2 inhibition with IC50 values (μM) of 11.40, 14.71, 17.70 and 20.58 against indomethacin (8.80). Furthermore, isoorientin, orientin, isovitexin, and vitexin produced significant concentration-dependent inhibition with IC50 values (μM) of COX-2: 7.13, 9.51, 12.81, 16.61; IL-1β 4.80, 6.20, 10.85, 14.51; IL-6: 4.01, 5.90, 11.51 and 14.88 as compared to dexamethasone: 5.29, 2.93, 3.72, respectively (p < 0.05). CONCLUSION Conclusively, isolated phytoconstituents are reported for the first time from the A. elliptica. Moreover, isovitexin, vitexin orientin and isoorientin abrogated LPS-induced inflammatory responses in human plasma at non-cytotoxic concentrations.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Malaysia.
| | - Juriyati Jalil
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Malaysia.
| | - Khairana Husain
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Malaysia.
| | - Hazni Falina Mohamad
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Abrar Ahmad
- College of Pharmacy, University of Punjab, Allama Iqbal Campus, Mall Road Lahore, Pakistan.
| |
Collapse
|
10
|
Zhang Q, Li X, Li J, Hu Y, Liu J, Wang F, Zhang W, Chang F. Mechanism of Anti-Inflammatory and Antibacterial Effects of QingXiaoWuWei Decoction Based on Network Pharmacology, Molecular Docking and In Vitro Experiments. Front Pharmacol 2021; 12:678685. [PMID: 34335250 PMCID: PMC8320847 DOI: 10.3389/fphar.2021.678685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Aim: QingXiaoWuWei Decoction (QXWWD) is a traditional Chinese medicine that is commonly used in clinical settings to treat inflammatory and bacterial diseases. However, there is still a lot to learn about its molecular mechanism. A network pharmacology approach was applied to investigate the pharmacological mechanisms of QXWWD in inflammation treatment. Methods: The basic mechanisms involved in the anti-inflammatory and antibacterial potentials of QXWWD were identified using network pharmacology and molecular docking. The principal components of QXWWD were identified by the HPLC-Q-Exactive-MS method. The antibacterial bioactivity of QXWWD was further investigated using the Kirby-Bauer disc diffusion method and the determination of the minimum inhibitory concentration. The anti-inflammatory activity of QXWWD was evaluated using mice ear swelling test, RAW264.7 cell culture, and pro-inflammatory cytokines measurement. Skin irritation and HE staining were employed to evaluate the safety of QXWWD topical use and to depict the drug’s potential therapeutic function. The hub genes and signaling pathways associated with inflammatory and bacterial diseases were validated by western blot in addition to biochemical and pathological markers. Results: Our findings revealed that the ethanolic extract of QXWWD had a strong inhibitory effect against Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pneumoniae. Meanwhile, QXWWD was potentially effective in suppressing ear swelling, elevated white blood cell counts, and the TNF-α, IL-1, and IL-6 levels. According to skin irritation, QXWWD was found to be safe when tested for topical application. The results of HE staining showed that the possible therapeutic role of QXWWD was related to the change in skin microstructure. Also, the network pharmacology, molecular docking as well as Q-Exactive-MS and HPLC analysis suggested that the synergistic effect of quercetin, luteolin and other ingredients could serve as main contributor of QXWWD for its anti-inflammatory and antibacterial activities. Moreover, the JUN, MAPK1, RELA, NFKBIA, MYC, and AKT1 were the potential identified key targets, and MAPK/PI3K/Akt was among the possibly involved signaling pathways in the anti-inflammatory and antibacterial activities of QXWWD. Conclusions: From a therapeutic standpoint, QXWWD may be a promising antibacterial and anti-inflammatory agent for the treatment of bacterial, acute, and chronic dermatitis.
Collapse
Affiliation(s)
- Qian Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xue Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuxia Hu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fang Wang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fuhou Chang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|