1
|
Antunes DR, Forini MMLH, Biscalchim ÉR, Lima PHC, Cavalcante LAF, Teixeira Filho MCM, Tripathi DK, Caballero JP, Grillo R. Polysaccharide-based sustainable hydrogel spheres for controlled release of agricultural inputs. Int J Biol Macromol 2024; 279:135202. [PMID: 39216580 DOI: 10.1016/j.ijbiomac.2024.135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Producing food in quantity and quality to meet the growing population demand is a challenge for the coming years. In addition to the need to improve the use and efficiency of conventional agricultural inputs, we face climate change and disparity in access to food. In this context, creating innovative, efficient, and ecologically approaches is necessary to transform this global scenario. Several delivery systems are being developed to encapsulate agrochemicals, aiming to improve the controlled release of active ingredients and protect them against environmental biotic and abiotic factors. Among these systems, hydrogel spheres are particularly notable for their ability to be fabricated from biodegradable materials, allowing the encapsulation of molecules, nanomaterials, and even organisms (e.g., bacteria and fungi). This review provides an overview of the latest progress in developing polysaccharide-based hydrogel spheres for agriculture. In addition, we describe methods for preparing hydrogel spheres and discuss the encapsulation and release of agricultural inputs in the field. Finally, we put hydrogel spheres into perspective and seek to highlight some current challenges in the field to spark new inspiration and improve the development of environmentally friendly and cost-effective delivery systems for the agricultural sector.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Érica R Biscalchim
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Marcelo C M Teixeira Filho
- São Paulo State University (UNESP), Department of Plant Protection, Rural Engineering and Soils, School of Engineering, Ilha Solteira, SP 15385-000, Brazil
| | - Durgesh K Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Javier Pitti Caballero
- Instituto de Innovación Agropecuaria de Panamá (IDIAP), Estación Experimental de Cerro Punta, Centro de Innovación Agropecuaria de Chiriquí, Provincia de Chiriquí, Panamá
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| |
Collapse
|
2
|
Omidian H, Akhzarmehr A, Chowdhury SD. Advancements in Cellulose-Based Superabsorbent Hydrogels: Sustainable Solutions across Industries. Gels 2024; 10:174. [PMID: 38534592 DOI: 10.3390/gels10030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The development of superabsorbent hydrogels is experiencing a transformative era across industries. While traditional synthetic hydrogels have found broad utility, their non-biodegradable nature has raised environmental concerns, driving the search for eco-friendlier alternatives. Cellulose-based superabsorbents, derived from sustainable sources, are gaining prominence. Innovations include biodegradable polymer hydrogels, natural cellulose-chitosan variants, and cassava starch-based alternatives. These materials are reshaping agriculture by enhancing soil fertility and water retention, serving as potent hemostatic agents in medicine, contributing to pollution control, and providing eco-friendly construction materials. Cellulose-based hydrogels also offer promise in drug delivery and hygiene products. Advanced characterization techniques aid in optimizing their properties, while the shift towards circular economy practices further highlights sustainability. This manuscript provides a comprehensive overview of these advancements, highlighting their diverse applications and environmental benefits.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Arnavaz Akhzarmehr
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
3
|
Zhan Z, Chen L, Wang C, Shuai Y, Duan H, Wang Z. Super Water-Storage Self-Adhesive Gel for Solar Vapor Generation and Collection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8181-8189. [PMID: 36720174 DOI: 10.1021/acsami.2c21555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Water treatment consumes lots of energy from fossil fuels nowadays, and the emission of CO2 enhances the temperature on earth, resulting in more and more hazards. Thus, clean water production enabled by green energy without CO2 emission is attracting more and more attention. Herein, we propose a novel solar evaporation system achieving both solar evaporation and water storage with two different unique hydrogels based on a three-dimensional (3D) printing technique. The hydrogel absorber demonstrates an ultrahigh absorptance (98.2%) of solar light, while the water-storage hydrogel absorbs more than 100 times its own weight of water, demonstrating super water-storage performance with strong self-adhesiveness. The solar vapor generation rate can be as high as 3.14 kg·m-2·h-1, with a solar evaporation efficiency up to 91.2% irradiated by 1.43 sun. Furthermore, our environmentally friendly solar evaporation system achieves ultrahigh water purification efficiency of 99.99% for salt, heavy ions, and acid/alkaline with remarkable stability and durability. Our solar evaporation system promises long-lasting applications for the hydrological cycle enabled by solar energy, such as seawater desalination, sterilization, wastewater purification, and so on.
Collapse
Affiliation(s)
- Ziheng Zhan
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, P. R. China
| | - Lei Chen
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, P. R. China
| | - Chao Wang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), Beijing100094, P. R. China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, P. R. China
| | - Huigao Duan
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, P. R. China
| | - Zhaolong Wang
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
4
|
Novel cationic cellulose beads for oral delivery of poorly water-soluble drugs. Int J Pharm X 2022; 5:100146. [PMID: 36593986 PMCID: PMC9804101 DOI: 10.1016/j.ijpx.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cellulose beads emerge as carriers for poorly water-soluble drugs due to their eco-friendly raw materials and favorable porous structure. However, drug dissolution may be limited by their poor swelling ability and the presence of closed pores caused by shrinkage of the pristine cellulose beads. In this study, novel cellulose beads that can swell in acidic environment were prepared by introducing ethylenediamine (EDA) on dialdehyde cellulose (DAC), thereby addressing the shrinkage and closed pore problem of cellulose beads. The effect of the ratio of EDA on the swelling behavior and amine content of beads was studied. Three model drugs with different physicochemical properties were selected to study the physical state of loaded drugs and their release behavior. According to the results of XRPD and DSC, indomethacin and itraconazole loaded in the beads were amorphous at a drug loading of 20%, but fenofibrate was partially crystalline. Both bead size and the ratio of amine groups influenced the release behavior of the model drugs. The in vitro dissolution results showed that the cationic beads greatly improved the solubility and dissolution rate of the drug compared with the crystalline drug. Beads with a small size and high ratio of EDA tend to achieve a better drug dissolution rate and cumulative release percentage. Physical stability studies of the itraconazole-loaded beads were also implemented under four different temperature/humidity conditions for up to two months. The results showed that crystallization only appeared after two months of storage at 40°/75% RH, and the drug maintained a non-crystalline state in the other three storage conditions (0 °C/0 %RH, 0 °C/32 %RH, 25 °C/32 %RH). In conclusion, the novel pH-responsive cationic cellulose beads show great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.
Collapse
Key Words
- AC, Acetone
- Amorphous state
- CBs, Cellulose beads
- Cationic cellulose beads
- DAC, Dialdehyde cellulose
- DCM, Dichloromethane
- DMSO, Dimethyl sulfoxide
- EDA, Ethylenediamine
- EtOH, Ethanol
- FNB, Fenofibrate
- FTIR, Fourier-transform infrared spectroscopy
- HPLC, High performance liquid chromatography
- ILs, Ionic liquids
- IND, Indomethacin
- ITZ, Itraconazole
- MeOH, Methanol
- NASDs, Amorphous solid dispersions
- NCEs, New Chemical Entities
- NMMO, N-methylmorpholine N –oxide
- Poorly water-soluble drugs
- SGF, Simulated gastric fluid
- Solubility improvement
- Supersaturation
- Swelling
- TBA, Tert-butanol
- Tg, Glass transition temperature
- XRPD, X-ray powder diffraction
- mDSC, Modulated differential scanning calorimetry
Collapse
|
5
|
Wever PD, Janssens J, Fardim P. Fabrication of cellulose cryogel beads via room temperature dissolution in onium hydroxides. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
6
|
Xie F, Fardim P, Van den Mooter G. Porous soluble dialdehyde cellulose beads: A new carrier for the formulation of poorly water-soluble drugs. Int J Pharm 2022; 615:121491. [PMID: 35063594 DOI: 10.1016/j.ijpharm.2022.121491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
Abstract
Cellulose beads are porous spherical particles with promising futures for drug delivery applications. In this study, novel dialdehyde cellulose (DAC) beads are developed by periodate oxidation of pristine cellulose for oral delivery of weakly basic poorly water-soluble drugs. Diazepam and itraconazole were studied as model drugs. Drug loadings in DAC beads up to 40% were obtained. Depending on the drug loading, complete or partial amorphization of drugs in DAC beads was observed. Drugs in the amorphous state not only presented a higher extent of dissolution from the DAC beads compared to the crystalline model drug, but the obtained concentration was also supersaturated. This supersaturation is attributed to the amorphization of the drugs in the beads in conjunction with the dissolution of the DAC beads at a neutral pH of the dissolution medium. Further, the effects of two different solvent systems used in the lyophilization step during the preparation of the DAC beads (100% water and 90/10% tert-butanol/water mixture) on their structure were investigated. Interestingly, the selection of the solvent system greatly impacted the bead structure, resulting in radically different drug loading capacity, physical properties, and release behavior of the model drugs. In summary, this is the first study that reports on exploiting soluble, porous, dialdehyde cellulose beads, showing great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.
Collapse
Affiliation(s)
- Fan Xie
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Pedro Fardim
- Bio&Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Cellulose-based hydrogel beads: Preparation and characterization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Xie F, De Wever P, Fardim P, Van den Mooter G. TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract. Molecules 2021; 26:molecules26041030. [PMID: 33672078 PMCID: PMC7919685 DOI: 10.3390/molecules26041030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the carboxyl groups mediated by the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyradical)/NaClO/NaClO2 system presents the pH-responsive ability to cellulose beads, which can retain the drug in beads at pH = 1.2 and release at pH = 7.0. The release rate can be controlled by simply adjusting the degree of oxidation to achieve drug release at different locations and periods. A higher degree of oxidation corresponds to a faster release rate, which is attributed to a higher degree of re-swelling and higher hydrophilicity of OCBs. The zero-order release kinetics of the model drugs from the OCBs suggested a constant drug release rate, which is conducive to maintaining blood drug concentration, reducing side effects and administration frequency. At the same time, the effects of different model drugs and different drug-loading solvents on the release behavior and the physical state of the drugs loaded in the beads were studied. In summary, the pH-responsive oxidized cellulose beads with good biocompatibility, low cost, and adjustable release rate have shown great potential in the field of controlled drug release.
Collapse
Affiliation(s)
- Fan Xie
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Pieter De Wever
- Bio & Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, 3000 Leuven, Belgium; (P.D.W.); (P.F.)
| | - Pedro Fardim
- Bio & Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, 3000 Leuven, Belgium; (P.D.W.); (P.F.)
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
- Correspondence: ; Tel.: +32-16-330-304
| |
Collapse
|