1
|
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, Cordeiro MNS. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chem Rev 2024; 124:3392-3415. [PMID: 38466339 PMCID: PMC10979404 DOI: 10.1021/acs.chemrev.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
Collapse
Affiliation(s)
- Nádia M. Figueiredo
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Iuliia V. Voroshylova
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete S. C. Ferreira
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jorge M. C. Marques
- CQC−IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Forson M, Bashiru M, Macchi S, Singh S, Anderson AD, Sayyed S, Ishtiaq A, Griffin R, Ali N, Oyelere AK, Berry B, Siraj N. Cationic Porphyrin-Based Ionic Nanomedicines for Improved Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2023; 6:5662-5675. [PMID: 38063308 PMCID: PMC10777306 DOI: 10.1021/acsabm.3c00809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This study presents the synthesis and characterization of monosubstituted cationic porphyrin as a photodynamic therapeutic agent. Cationic porphyrin was converted into ionic materials by using a single-step ion exchange reaction. The small iodide counteranion was replaced with bulky BETI and IR783 anions to reduce aggregation and enhance the photodynamic effect of porphyrin. Carrier-free ionic nanomedicines were then prepared by using the reprecipitation method. The photophysical characterization of parent porphyrin, ionic materials, and ionic nanomaterials, including absorbance, fluorescence and phosphorescence emission, quantum yield, radiative and nonradiative rate, and lifetimes, was performed. The results revealed that the counteranion significantly affects the photophysical properties of porphyrin. The ionic nanomaterials exhibited an increase in the reactive oxygen yield and enhanced cytotoxicity toward the MCF-7 cancer cell line. Examination of results revealed that the ionic materials exhibited an enhanced photodynamic therapeutic activity with a low IC50 value (nanomolar) in cancerous cells. These nanomedicines were mainly localized in the mitochondria. The improved light cytotoxicity is attributed to the enhanced photophysical properties and positive surface charge of the ionic nanomedicines that facilitate efficient cellular uptake. These results demonstrate that ionic material-based nanodrugs are promising photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Mavis Forson
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| | - Mujeebat Bashiru
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| | - Sarbjot Singh
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| | - Ashley Danyelle Anderson
- Arkansas State Crime Laboratory, 3 Natural Resources Dr, Little Rock, Arkansas 72205, United States
| | - Shehzad Sayyed
- Department of Biology, University of Arkansas, 1 University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Arisha Ishtiaq
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| | - Robert Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, Arkansas Nanomedicine Center, 4301 W Markham St, Little Rock, Arkansas 72205, United States
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Brian Berry
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, Arkansas 72204, United States
| |
Collapse
|
3
|
González-Martín R, Lodoso-Ruiz E, Trujillo-Rodríguez MJ, Pino V. Magnetic Ionic Liquids in Analytical Microextraction: A Tutorial Review. J Chromatogr A 2022; 1685:463577. [DOI: 10.1016/j.chroma.2022.463577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/27/2022]
|
4
|
Alves MS, Neto LCF, Scheid C, Merib J. An overview of magnetic ionic liquids: From synthetic strategies to applications in microextraction techniques. J Sep Sci 2021; 45:258-281. [PMID: 34726337 DOI: 10.1002/jssc.202100599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Remarkable progress has been achieved in the application of magnetic ionic liquids in microextraction-based procedures. These materials exhibit unique physicochemical properties of ionic liquids featuring additional responses to magnetic fields by incorporating a paramagnetic component within the chemical structure. This intriguing property can open new horizons in analytical extractions because the solvent manipulation is facilitated. Moreover, the tunable chemical structures of magnetic ionic liquids also allow for task-specific extractions that can significantly increase the method selectivity. This review aimed at providing an up-to-date overview of articles involving synthesis, physicochemical properties, and applications of magnetic ionic liquids highlighting recent developments and configurations. Moreover, a section containing critical evaluation and future trends in magnetic ionic liquid-based extractions is included.
Collapse
Affiliation(s)
- Mônica Silva Alves
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Ferreira Neto
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Camila Scheid
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
5
|
Macchi S, Zubair M, Hill R, Alwan N, Khan Y, Ali N, Guisbiers G, Berry B, Siraj N. Improved Photophysical Properties of Ionic Material-Based Combination Chemo/PDT Nanomedicine. ACS APPLIED BIO MATERIALS 2021; 4:7708-7718. [PMID: 35006702 PMCID: PMC8900487 DOI: 10.1021/acsabm.1c00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a cost-effective and prompt approach to develop ionic material-based combination nanodrugs for cancer therapy is presented. A chemotherapeutic (phosphonium) cation and photodynamic therapeutic (porphyrin) anion are combined using a single step ion exchange reaction. Afterward, a nanomedicine is prepared from this ionic materials-based combination drug using a simplistic strategy of reprecipitation. Improved photophysical characteristics such as a slower nonradiative rate constant, an enhanced phosphorescence emission, a longer lifetime, and a bathochromic shift in absorbance spectra of porphyrin are observed in the presence of a chemotherapeutic countercation. The photodynamic therapeutic activity of nanomedicines is investigated by measuring the singlet oxygen quantum yield using two probes. As compared to the parent porphyrin compound, the synthesized combination material showed a 2-fold increase in the reactive oxygen species quantum yield, due to inhibition of face-to-face aggregation of porphyrin units in the presence of bulky chemotherapeutic ions. The dark cytotoxicity of combination therapy nanomedicines in the MCF-7 (cancerous breast) cell line is also increased as compared to their corresponding parent compounds in vitro. This is due to the high cellular uptake of the combination nanomedicines as compared to that of the free drug. Further, selective toxicity toward cancer cells was acquired by functionalizing nanomedicine with folic acid followed by incubation with MCF-7 and MCF-10A (noncancerous breast). Light toxicity experiments indicate that the synthesized ionic nanomedicine shows a greater cell death than either parent drug due to the improved photophysical properties and effective combination effect. This facile and economical strategy can easily be utilized in the future to develop many other combination ionic nanomedicines with improved photodynamics.
Collapse
Affiliation(s)
- Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Mohd Zubair
- Department of Biology, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Robert Hill
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Nabeel Alwan
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Yusuf Khan
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Grégory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Brian Berry
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| |
Collapse
|
6
|
Abstract
In the last decades, a myriad of materials has been synthesized and utilized for the development of sample preparation procedures. The use of their magnetic analogues has gained significant attention and many procedures have been developed using magnetic materials. In this context, the benefits of a new class of magnetic ionic liquids (MILs), as non-conventional solvents, have been reaped in sample preparation procedures. MILs combine the advantageous properties of ionic liquids along with the magnetic properties, creating an unsurpassed combination. Owing to their unique nature and inherent benefits, the number of published reports on sample preparation with MILs is increasing. This fact, along with the many different types of extraction procedures that are developed, suggests that this is a promising field of research. Advances in the field are achieved both by developing new MILs with better properties (showing either stronger response to external magnetic fields or tunable extractive properties) and by developing and/or combining methods, resulting in advanced ones. In this advancing field of research, a good understanding of the existing literature is needed. This review aims to provide a literature update on the current trends of MILs in different modes of sample preparation, along with the current limitations and the prospects of the field. The use of MILs in dispersive liquid–liquid microextraction, single drop microextraction, matrix solid-phase dispersion, etc., is discussed herein among others.
Collapse
|