1
|
Yang Y, Sun X, Peng C, Wei J, Yang X. The Genus Commiphora: An Overview of Its Traditional Uses, Phytochemistry, Pharmacology, and Quality Control. Pharmaceuticals (Basel) 2024; 17:1524. [PMID: 39598434 PMCID: PMC11597752 DOI: 10.3390/ph17111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Myrrh is the resinous substance secreted by plants of the genus Commiphora. In traditional Chinese medicine, Ayurvedic medicine, and traditional Arabic medicine, myrrh is regarded as an important medicinal material, widely used in the treatment of trauma, arthritis, hyperlipidemia, and other diseases. This review explores the evolving scientific understanding of the genus Commiphora, covering facets of ethnopharmacology, phytochemistry, pharmacology, artificial cultivation, and quality control. In particular, the chemical constituents and pharmacological research are reviewed. More than 300 types of secondary metabolites have been identified through phytochemical studies of this genus. Guggulsterone is a bioactive steroid isolated mainly from Commiphora mukul. The two isomers, Z- and E-guggulsterone, have shown a wide range of in vitro and in vivo pharmacological effects, including anti-proliferation, antioxidant, anti-inflammatory, and antibacterial. However, the current scientific research on quality control of medicinal materials and identification of original plants is insufficient, which limits the reproducibility and accuracy of biological activity evaluation experiments. Therefore, the establishment of analytical protocols and standardization of extracts is an important step before biological evaluation. At the same time, in order to find more bioactive substances, it is necessary to strengthen the research on the stems, barks, and leaves of this genus. The sources used in this study include PubMed, CNKI, Web of Science, Google Scholar, and other databases, as well as multinational pharmacopoeias, ancient books of traditional medicine, herbal classics, and modern monographs.
Collapse
Affiliation(s)
- Yujia Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.Y.); (X.S.); (C.P.); (J.W.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Xiuting Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.Y.); (X.S.); (C.P.); (J.W.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Chuhang Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.Y.); (X.S.); (C.P.); (J.W.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.Y.); (X.S.); (C.P.); (J.W.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Xinquan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| |
Collapse
|
2
|
Eka Ningrum N, Cahyaning Rahamjnhyu DU, Dianhar H, Wongso H, Keller PA, Satia Nugraha A. Chemical Diversity, Pharmacology, Synthesis and Detection of Naturally Occurring Peroxides. Chem Biodivers 2024; 21:e202400794. [PMID: 38997231 DOI: 10.1002/cbdv.202400794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Natural occurring peroxides are interesting bioprospecting targets due to their molecular structural diversity and the wide range of pharmacological activities. In this systematic review, a total of 123 peroxide compounds were analysed from 99 published papers with the compounds distributed in 31 plants, 18 animals and 41 microorganisms living in land and water ecosystems. The peroxide moiety exists as both cyclic and acyclic entities and can include 1,2-dioxolanes, 1,2-dioxane rings and common secondary metabolites with a peroxo group. These peroxides possessed diverse bioactivities including anticancer, antimalarial, antimicrobial, anti-inflammatory, neuroprotective, adipogenic suppressor, antituberculosis, anti-melanogenic and anti-coagulant agents. Biosynthetic pathways and mechanisms of most endoperoxides have not been well established. Method development in peroxide detection has been a challenging task requiring multidisciplinary investigation and exploration on peroxy-containing secondary metabolites are necessary.
Collapse
Affiliation(s)
- Nindya Eka Ningrum
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
| | - Dyah Utami Cahyaning Rahamjnhyu
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Hanhan Dianhar
- Universitas Negeri Jakarta, Chemistry Study Program, Faculty of Mathematics and Natural Sciences, Research Center for Radioisotope, East Jakarta, 13220, Indonesia
| | - Hendris Wongso
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Sumedang, Indonesia
- Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Paul A Keller
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ari Satia Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
3
|
Unterholzner A, Kuck K, Weinzierl A, Lipowicz B, Heilmann J. An Unprecedented 4,8-Cycloeudesmane, Further New Sesquiterpenoids, a Triterpene, Steroids, and a Lignan from the Resin of Commiphora myrrha and Their Anti-Inflammatory Activity In Vitro. Molecules 2024; 29:4315. [PMID: 39339310 PMCID: PMC11434423 DOI: 10.3390/molecules29184315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Myrrh has a long tradition in the treatment of inflammatory diseases. However, many of its (active) constituents are still unknown. In the present study, secondary metabolites were isolated from an ethanolic extract by various separation methods (liquid-liquid partition, silica and RP18 flash chromatography, CPC, and preparative HPLC), their structures were elucidated with NMR spectroscopy and mass spectrometry, and the selected compounds were tested for their effect on LPS-induced NO production by RAW 264.7 murine macrophages. Among the isolated substances are 17 sesquiterpenes (1-17) including the first 4,8-cycloeudesmane (1), a triterpene (38), two phytosterols (39, 40) and one lignan (43), which were previously unknown as natural products. Numerous compounds are described for the first time for the genus Commiphora. Eight of the eleven compounds tested (1, 29, 31, 32, 34-37) showed a statistically significant, concentration-dependent weak to moderate anti-inflammatory effect on NO production in the LPS-stimulated RAW 264.7 macrophages in vitro. For the reference substance, furanoeudesma-1,3-diene, an IC50 of 46.0 µM was determined. These sesquiterpenes might therefore be part of the multi-target molecular principles behind the efficacy of myrrh in inflammatory diseases.
Collapse
Affiliation(s)
- Anna Unterholzner
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (A.U.)
| | - Katrin Kuck
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (A.U.)
| | - Anna Weinzierl
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (A.U.)
| | - Bartosz Lipowicz
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, D-30855 Langenhagen, Germany
| | - Jörg Heilmann
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (A.U.)
| |
Collapse
|
4
|
Kuck K, Unterholzner A, Lipowicz B, Schwindl S, Jürgenliemk G, Schmidt TJ, Heilmann J. Terpenoids from Myrrh and Their Cytotoxic Activity against HeLa Cells. Molecules 2023; 28:molecules28041637. [PMID: 36838624 PMCID: PMC9964945 DOI: 10.3390/molecules28041637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The oleo-gum resin of Commiphora myrrha (Nees) Engl. has a long history of medicinal use, although many of its constituents are still unknown. In the present investigation, 34 secondary metabolites were isolated from myrrh resin using different chromatographic techniques (silica flash chromatography, CPC, and preparative HPLC) and their structures were elucidated with NMR spectroscopy, HRESIMS, CD spectroscopy, and ECD calculations. Among the isolated substances are seven sesquiterpenes (1-7), one disesquiterpene (8), and two triterpenes (23, 24), which were hitherto unknown, and numerous substances are described here for the first time for C. myrrha or the genus Commiphora. Furthermore, the effects of selected terpenes on cervix cancer cells (HeLa) were studied in an MTT-based in vitro assay. Three triterpenes were observed to be the most toxic with moderate IC50 values of 60.3 (29), 74.5 (33), and 78.9 µM (26). Due to the different activity of the structurally similar triterpenoids, the impact of different structural elements on the cytotoxic effect could be discussed and linked to the presence of a 1,2,3-trihydroxy substructure in the A ring. The influence on TNF-α dependent expression of the intercellular adhesion molecule 1 (ICAM-1) in human microvascular endothelial cells (HMEC-1) was also tested for 4-6, 9-11, 17, 18, 20, and 27 in vitro, but revealed less than 20% ICAM-1 reduction and, therefore, no significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Katrin Kuck
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Anna Unterholzner
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Bartosz Lipowicz
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, D-30855 Langenhagen, Germany
| | - Sebastian Schwindl
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Guido Jürgenliemk
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas J. Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie, Corrensstr. 48, D-48149 Münster, Germany
| | - Jörg Heilmann
- Lehrstuhl Pharmazeutische Biologie, Universitätsstraße 31, D-93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
5
|
A Themed Issue in Honor of Professor K. Hüsnü Can Baser-Outstanding Contributions in the Fields of Pharmacognosy, Phytochemistry, Botany and Ethnopharmacology. Molecules 2021; 26:molecules26185507. [PMID: 34576976 PMCID: PMC8467153 DOI: 10.3390/molecules26185507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Dear Colleagues, [...].
Collapse
|