1
|
Blawitzki LC, Bartels N, Bonda L, Schmidt S, Monzel C, Hartmann L. Glycomacromolecules to Tailor Crowded and Heteromultivalent Glycocalyx Mimetics. Biomacromolecules 2024; 25:5979-5994. [PMID: 39122664 DOI: 10.1021/acs.biomac.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The glycocalyx, a complex carbohydrate layer on cell surfaces, plays a crucial role in various biological processes. Understanding native glycocalyces' complexity is challenging due to their intricate and dynamic nature. Simplified mimics of native glycocalyces offer insights into glycocalyx functions but often lack molecular precision and fail to replicate key features of the natural analogues like molecular crowding and heteromultivalency. We introduce membrane-anchoring precision glycomacromolecules synthesized via solid-phase polymer synthesis (SPPoS) and thiol-induced, light-activated controlled radical polymerization (TIRP), enabling the construction of crowded and heteromultivalent glycocalyx mimetics with varying molecular weights and densities in giant unilamellar vesicles (GUVs). The incorporation and dynamics of glycomacromolecules in the GUVs are examined via microscopy and fluorescence correlation spectroscopy (FCS) and studies on lectin-carbohydrate-mediated adhesion of GUVs reveal inhibitory and promotional adhesion effects corresponding to different glycocalyx mimetic compositions, bridging the gap between synthetic models and native analogues.
Collapse
Affiliation(s)
- Luca-Cesare Blawitzki
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Nina Bartels
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lorand Bonda
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Cornelia Monzel
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| |
Collapse
|
2
|
Bhatt D, Singh S, Singhal N, Bhardwaj N, Deep A. Glyco-conjugated metal-organic framework biosensor for fluorescent detection of bacteria. Anal Bioanal Chem 2023; 415:659-667. [PMID: 36462049 DOI: 10.1007/s00216-022-04455-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Metal-organic frameworks (MOFs) are hybrid materials constructed by the linkage between an inorganic secondary building unit and an organic linker. A number of MOFs are luminescent in nature and can be structurally tuned for desirable geometry, surface functionality, and porosity. Luminescent MOFs have been endorsed for various biosensing applications. Lectins and carbohydrates have been used for the development of simple and convenient biosensing and bioimaging tools. Lectins are mostly present on the surface of microorganisms where they aid in pathogenesis. Due to this, they can be potential targets for a microbial biosensor. The present study, for the first time, explores the usage of a carbohydrate-conjugated FeMOF (Glyco-MOF) bioprobe for the selective determination of Pseudomonas aeruginosa and Escherichia coli. NH2-MIL-53(Fe) MOF was synthesized via a room temperature protocol and separately conjugated with galactose and mannose sugars via glutaraldehyde chemistry. The synthesized bioprobe is validated for structural integrity, luminescent nature, stability, and analyte assay. Electron microscopy studies validated the unhindered MOF's morphology and structural integrity, after bioconjugation. The synthesized bioprobes were able to detect P. aeruginosa and E. coli up to respective detection limits of 202 and 8 CFU/mL, respectively. The bioprobes are selective even in co-presence of possible interferants as well as being environmentally stable.
Collapse
Affiliation(s)
- Deepanshu Bhatt
- Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalini Singh
- Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nitin Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Wilms D, Müller J, Urach A, Schröer F, Schmidt S. Specific Binding of Ligand-Functionalized Thermoresponsive Microgels: Effect of Architecture, Ligand Density, and Hydrophobicity. Biomacromolecules 2022; 23:3899-3908. [PMID: 35930738 DOI: 10.1021/acs.biomac.2c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecular interaction of ligand-presenting switchable microgels is studied with respect to the polymer type, composition, and structure of the microgels. Monodisperse microgels are prepared through precipitation polymerization of N-isopropylacrylamide (PNIPAM microgels) or oligo(ethylene glycol methacrylamide)s (POEGMA microgels) in the presence of crosslinkers or in their absence (self-crosslinked). Functionalization with mannose or biotin as model ligands and affinity measurements upon heating/cooling are conducted to obtain mechanistic insights into how the microgel phase transition affects the specific interactions. In particular, we are interested in adjusting the crosslinking, swelling degree, and ligand density of mannose-functionalized microgels to reversibly catch and release mannose binding Escherichia coli by setting the temperature below or above the microgels' volume phase transition temperature (VPTT). The increased mannose density for collapsed microgels above the VPTT results in stronger E. coli binding. Detachment of E. coli by reswelling the microgels below the VPTT is achieved only for self-crosslinked microgels showing a stronger decrease in ligand density compared to microgels with dedicated crosslinkers. Owing to a reduced mannose density in the shell of POEGMA microgels, their E. coli binding was lower compared to PNIPAM microgels, as supported by ultraresolution microscopy. Importantly, an inverse temperature-controlled binding of microgels decorated with hydrophilic mannose and hydrophobic biotin ligands is observed. This indicates that hydrophobic ligands are inaccessible in the collapsed hydrophobic network above the VPTT, whereas hydrophilic mannose units are then enriched at the microgel-water interface and thus are more accessible.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Janita Müller
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anselm Urach
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Fabian Schröer
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Wilms D, Adler Y, Schröer F, Bunnemann L, Schmidt S. Elastic modulus distribution in poly( N-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM. SOFT MATTER 2021; 17:5711-5717. [PMID: 34013309 DOI: 10.1039/d1sm00291k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM. Thermoresponsive poly(N-isopopylacrylamide) (PNIPAM) and poly(2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol)methacrylate) (P(MEO2MA-co-OEGMA)) microgels are synthesized via precipitation polymerization above their lower critical solution temperature (LCST). High-resolution elastic modulus profiles are acquired using AFM force-indentation mapping of surface-deposited microgels at 25 °C. For both microgel systems, the use of a bifunctional crosslinker leads to a strong elastic modulus gradient with stiff microgel cores and soft networks toward the edge. In absence of a dedicated crosslinker (self-crosslinking), PNIPAM microgels show a homogeneous elastic modulus distribution, whereas self-crosslinked P(MEO2MA-co-OEGMA) microgels still show decreasing elastic moduli from the centre to the edge of the microgels. However, POEGMA microgels without comonomer showed no elastic modulus gradient suggesting that different incorporation rates of MEO2MA and OEGMA result in a radial variation of the polymer segment density. In addition, when varying the molecular weight of OEGMA the overall elastic modulus was affected, possibly due to molecular weight-dependent phase behavior and different reactivity. This shows that quite different microgel architectures can be obtained by the simple "one-pot" precipitation reaction of microgels which may open to new avenues toward advanced applications.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Yanik Adler
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Fabian Schröer
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Lennart Bunnemann
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|