Meschaninova MI, Entelis NS, Chernolovskaya EL, Venyaminova AG. A Versatile Solid-Phase Approach to the Synthesis of Oligonucleotide Conjugates with Biodegradable Hydrazone Linker.
Molecules 2021;
26:molecules26082119. [PMID:
33917095 PMCID:
PMC8067880 DOI:
10.3390/molecules26082119]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
One of the ways to efficiently deliver various drugs, including therapeutic nucleic acids, into the cells is conjugating them with different transport ligands via labile or stable bonds. A convenient solid-phase approach for the synthesis of 5′-conjugates of oligonucleotides with biodegradable pH-sensitive hydrazone covalent bonds is proposed in this article. The approach relies on introducing a hydrazide of the ligand under aqueous/organic media to a fully protected support-bound oligonucleotide containing aldehyde function at the 5′-end. We demonstrated the proof-of-principle of this approach by synthesizing 5′-lipophilic (e.g., cholesterol and α-tocopherol) conjugates of modified siRNA and non-coding RNAs imported into mitochondria (antireplicative RNAs and guide RNAs for Mito-CRISPR/system). The developed method has the potential to be extended for the synthesis of pH-sensitive conjugates of oligonucleotides of different types (ribo-, deoxyribo-, 2′-O-methylribo-, and others) with ligands of different nature.
Collapse