1
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
2
|
Moni SS, Abdelwahab SI, Mohan S, Riadi Y, Elmobark ME, Areshyi RW, Sofyani HA, Halawi FA, Hakami MQ, Aljahdali IA, Oraibi B, Farasani A, Dawod OY, Alfaifi HA, Alzahrani AH, Jerah AA. Cetuximab-conjugated sodium selenite nanoparticles for doxorubicin targeted delivery against MCF-7 breast cancer cells. Nanomedicine (Lond) 2024; 19:2447-2462. [PMID: 39381998 PMCID: PMC11520552 DOI: 10.1080/17435889.2024.2403962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Aim: To develop and characterize doxorubicin-loaded sodium selenite nanoparticles (SSNP-DOX) and their surface attachment with cetuximab (mAb-SSNP-DOX).Methods: SSNP-DOX was formulated by gelation and then conjugated with cetuximab to form mAb-SSNP-DOX. Characterization included DLS, SEM, TEM, DSC, Raman spectroscopy and XRD. In vitro, the kinetics of doxorubicin release and cytotoxicity in MCF-7 breast cancer cells were investigated.Results: The zeta potential for SSNP-DOX and mAb-SSNP-DOX was -14.4 ± 10.1 mV and -27.5 ± 7.28 mV, with particle sizes of 181.3 nm and 227.5 nm, respectively. The formulation intensity was 89.7% for SSNP-DOX and 100% for mAb-SSNP-DOX, with PDI values of 0.419 and 0.251, respectively. SEM and TEM showed that mAb-SSNP-DOX was smooth and spherical. The DSC analysis revealed exothermic peaks at 102.44°C for SSNP-DOX and 144.21°C for mAb-SSNP-DOX, along with endothermic peaks at 269.19°C and 241.6°C, respectively. Raman spectroscopy showed a higher intensity for mAb-SSNP-DOX. The XRD study showed different peaks for each formulation. Both followed zero order kinetics for doxorubicin release. Cytotoxicity studies showed significant effects and high apoptosis in MCF-7 cells for both formulations.Conclusion: The mAb-SSNP-DOX showed promising properties, more effective doxorubicin release and higher cytotoxicity against breast cancer cells compared with SSNP-DOX.
Collapse
Affiliation(s)
- Sivakumar S Moni
- Department of Pharmaceutics, College of Parmacy, Jazan University, Jazan, 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - Syam Mohan
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha University, Saveetha Institute of Medical & Technical Science, Saveetha Dental College, Chennai, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Parmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Razan Willie Areshyi
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hissah Ali Sofyani
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fatma Ahmad Halawi
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Manar Qasem Hakami
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ieman A Aljahdali
- Department of Clinical Laboratory Sciences, Taif University, Taif, 11099, Saudi Arabia
| | - Bassem Oraibi
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdullah Farasani
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Medical Laboratory Technology, College of Nursing & Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ogail Yousif Dawod
- Department of Physical Therapy, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hassan Ahmad Alfaifi
- Ministry of Health Pharmaceutical Care Administration (Jeddah Second Health Cluster), Jeddah, 21589, Saudi Arabia
| | - Amal Hamdan Alzahrani
- College of Pharmacy, Department of Pharmacology & Toxicology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed Ali Jerah
- Department of Medical Laboratory Technology, College of Nursing & Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
3
|
Lyu N, Potluri PR, Rajendran VK, Wang Y, Sunna A. Multiplex detection of bacterial pathogens by PCR/SERS assay. Analyst 2024; 149:2898-2904. [PMID: 38572620 DOI: 10.1039/d4an00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial infections are a leading cause of death globally. The detection of DNA sequences correlated to the causative pathogen has become a vital tool in medical diagnostics. In practice, PCR-based assays for the simultaneous detection of multiple pathogens currently rely on probe-based quantitative strategies that require expensive equipment but have limited sensitivity or multiplexing capabilities. Hence, novel approaches to address the limitations of the current gold standard methods are still in high demand. In this study, we propose a simple multiplex PCR/SERS assay for the simultaneous detection of four bacterial pathogens, namely P. aeruginosa, S. aureus, S. epidermidis, and M. smegmatis. Wherein, specific primers for amplifying each target gDNA were applied, followed by applying SERS nanotags functionalized with complementary DNA probes and Raman reporters for specific identification of the target bacterial pathogens. The PCR/SERS assay showed high specificity and sensitivity for genotyping bacterial pathogen gDNA, whereby as few as 100 copies of the target gDNA could be detected. With high sensitivity and the convenience of standard PCR amplification, the proposed assay shows great potential for the sensitive detection of multiple pathogen infections to aid clinical decision-making.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Phani Rekha Potluri
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, NSW 2109, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, NSW 2109, Australia
| |
Collapse
|
4
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
5
|
Anisuzzman M, Komalla V, Tarkistani MAM, Kayser V. Anti-Tumor Activity of Novel Nimotuzumab-Functionalized Gold Nanoparticles as a Potential Immunotherapeutic Agent against Skin and Lung Cancers. J Funct Biomater 2023; 14:407. [PMID: 37623652 PMCID: PMC10456021 DOI: 10.3390/jfb14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is vital for many different types of cancer. Nimotuzumab (NmAb), an anti-EGFR monoclonal antibody (mAb), is used against some of EGFR-overexpressed cancers in various countries. It targets malignant cells and is internalized via receptor-mediated endocytosis. We hypothesized that mAb-nanoparticle conjugation would provide an enhanced therapeutic efficacy, and hence we conjugated NmAb with 27 nm spherical gold nanoparticles (AuNPs) to form AuNP-NmAb nanoconjugates. Using biophysical and spectroscopic methods, including ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier-transform infrared spectroscopy (FTIR), the AuNP-NmAb complex was characterized. Furthermore, in vitro studies were performed using a medium-level EGFR-expressing skin cancer cell (A431, EGFRmedium) and low-level EGFR-expressing lung cancer cell (A549, EGFRlow) to evaluate anti-tumor and cellular uptake efficiency via MTT assay and single-particle inductively coupled plasma mass spectrometry (spICP-MS), respectively. In comparison to NmAb monotherapy, the AuNP-NmAb treatment drastically reduced cancer cell survivability: for A431 cells, the IC50 value of AuNP-NmAb conjugate was 142.7 µg/mL, while the IC50 value of free NmAb was 561.3 µg/mL. For A549 cells, the IC50 value of the AuNP-NmAb conjugate was 163.6 µg/mL, while the IC50 value of free NmAb was 1,082.0 µg/mL. Therefore, this study highlights the unique therapeutic potential of AuNP-NmAb in EGFR+ cancers and shows the potential to develop other mAb nanoparticle complexes for a superior therapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
6
|
Villalobos Gutiérrez PT, Muñoz Carrillo JL, Sandoval Salazar C, Viveros Paredes JM, Gutiérrez Coronado O. Functionalized Metal Nanoparticles in Cancer Therapy. Pharmaceutics 2023; 15:1932. [PMID: 37514119 PMCID: PMC10383728 DOI: 10.3390/pharmaceutics15071932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there are many studies on the application of nanotechnology in therapy. Metallic nanoparticles are promising nanomaterials in cancer therapy; however, functionalization of these nanoparticles with biomolecules has become relevant as their effect on cancer cells is considerably increased by photothermal and photodynamic therapies, drug nanocarriers, and specificity by antibodies, resulting in new therapies that are more specific against different types of cancer. This review describes studies on the effect of functionalized palladium, gold, silver and platinum nanoparticles in the treatment of cancer, these nanoparticles themselves show an anticancer effect. This effect is further enhanced when the NPs are functionalized with either antibodies, DNA, RNA, peptides, proteins, or folic acid and other molecules. These NPs can penetrate the cell and accumulate in the tumor tissue, resulting in a cytotoxic effect through the generation of ROS, the induction of apoptosis, cell cycle arrest, DNA fragmentation, and a photothermal effect. NP-based therapy is a new strategy that can be used synergistically with chemotherapy and radiotherapy to achieve more effective therapies and reduce side effects.
Collapse
Affiliation(s)
| | | | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico
| | - Juan Manuel Viveros Paredes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
7
|
Lv Y, Wang W, Liu Y, Yi B, Chu T, Feng Z, Liu J, Wan X, Wang Y. Platycodin D represses β-catenin to suppress metastasis of cetuximab-treated KRAS wild-type colorectal cancer cells. Clin Exp Metastasis 2023:10.1007/s10585-023-10218-6. [PMID: 37326719 DOI: 10.1007/s10585-023-10218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, is extensively used for clinical therapy in KRAS wild-type colorectal cancer (CRC) patients. However, some patients still cannot get benefit from the therapy, because metastasis and resistance occur frequently after cetuximab treatment. New adjunctive therapy is urgently needed to suppress metastasis of cetuximab-treated CRC cells. In this study, we used two KRAS wild-type CRC cells, HT29 and CaCo2, to investigate whether platycodin D, a triterpenoid saponin isolated from Chinese medicinal herb Platycodon grandifloras, is able to suppress the metastasis of cetuximab-treated CRC. Label-free quantitative proteomics analyses showed that platycodin D but not cetuximab significantly inhibited expression of β-catenin in both CRC cells, and suggested that platycodin D counteracted the inhibition effect of cetuximab on cell adherence and functioned in repressing cell migration and invasion. Western blot results showed that single platycodin D treatment or combined platycodin D and cetuximab enhanced inhibition effects on expressions of key genes in Wnt/β-catenin signaling pathway, including β-catenin, c-Myc, Cyclin D1 and MMP-7, compared to single cetuximab treatment. Scratch wound-healing and transwell assays showed that platycodin D combined with cetuximab suppressed migration and invasion of CRC cells, respectively. Pulmonary metastasis model of HT29 and CaCo2 in nu/nu nude mice consistently showed that combined treatment using platycodin D and cetuximab inhibited metastasis significantly in vivo. Our findings provide a potential strategy to inhibit CRC metastasis during cetuximab therapy by addition of platycodin D.
Collapse
Affiliation(s)
- Yongming Lv
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Wenhong Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Liu
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
| | - Yijia Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
9
|
Singpanna K, Pornpitchanarong C, Patrojanasophon P, Rojanarata T, Ngawhirunpat T, Kevin Li S, Opanasopit P. Chitosan capped-gold nanoparticles as skin penetration enhancer for small molecules: A study in porcine skin. Int J Pharm 2023; 640:123034. [PMID: 37172630 DOI: 10.1016/j.ijpharm.2023.123034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Skin is considered one of the most convenient sites for drug administration. The present study evaluated the effect of gold nanoparticles stabilized by chitosan (CS-AuNPs) and citrate ions (Ci-AuNPs) on skin permeation of sodium fluorescein (NaFI) and rhodamine b base (RhB) as small model hydrophilic and lipophilic permeants, respectively. CS-AuNPs and Ci-AuNPs were characterized by transmitted electron microscopy (TEM) and dynamic light scattering (DLS). Skin permeation was investigated using porcine skin with diffusion cells and confocal laser scanning microscopy (CLSM). The CS-AuNPs and Ci-AuNPs were spherical-shaped nanosized particles (38.4±0.7 and 32.2±0.7 nm, respectively). The zeta potential of CS-AuNPs was positive (+30.7±1.2 mV) whereas that of Ci-AuNPs was negative (-60.2±0.4 mV). The skin permeation study revealed that CS-AuNPs could enhance the permeation of NaFI with enhancement ratio (ER) of 38.2±7.5, and the effect was superior to that of Ci-AuNPs. CLSM visualization suggested that skin permeation was enhanced by improving the delivery through the transepidermal pathway. However, the permeability of RhB, a lipophilic molecule, was not significantly affected by CS-AuNPs and Ci-AuNPs. Moreover, CS-AuNPs had no cytotoxic toward human skin fibroblast cells. Therefore, CS-AuNPs are a promising skin permeation enhancer of small polar compounds.
Collapse
Affiliation(s)
- Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - S Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, OH 45267, USA
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
10
|
Giri PM, Banerjee A, Layek B. A Recent Review on Cancer Nanomedicine. Cancers (Basel) 2023; 15:cancers15082256. [PMID: 37190185 DOI: 10.3390/cancers15082256] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is one of the most prevalent diseases globally and is the second major cause of death in the United States. Despite the continuous efforts to understand tumor mechanisms and various approaches taken for treatment over decades, no significant improvements have been observed in cancer therapy. Lack of tumor specificity, dose-related toxicity, low bioavailability, and lack of stability of chemotherapeutics are major hindrances to cancer treatment. Nanomedicine has drawn the attention of many researchers due to its potential for tumor-specific delivery while minimizing unwanted side effects. The application of these nanoparticles is not limited to just therapeutic uses; some of them have shown to have extremely promising diagnostic potential. In this review, we describe and compare various types of nanoparticles and their role in advancing cancer treatment. We further highlight various nanoformulations currently approved for cancer therapy as well as under different phases of clinical trials. Finally, we discuss the prospect of nanomedicine in cancer management.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
11
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
12
|
Marcelo GA, Montpeyó D, Galhano J, Martínez-Máñez R, Capelo-Martínez JL, Lorenzo J, Lodeiro C, Oliveira E. Development of New Targeted Nanotherapy Combined with Magneto-Fluorescent Nanoparticles against Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24076612. [PMID: 37047582 PMCID: PMC10095016 DOI: 10.3390/ijms24076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The need for non-invasive therapies capable of conserving drug efficiency and stability while having specific targetability against colorectal cancer (CRC), has made nanoparticles preferable vehicles and principal building blocks for the development of complex and multi-action anti-tumoral approaches. For that purpose, we herein report the production of a combinatory anti-tumoral nanotherapy using the production of a new targeting towards CRC lines. To do so, Magneto-fluorescent NANO3 nanoparticles were used as nanocarriers for a combination of the drugs doxorubicin (DOX) and ofloxacin (OFLO). NANO3 nanoparticles’ surface was modified with two different targeting agents, a newly synthesized (anti-CA IX acetazolamide derivative (AZM-SH)) and a commercially available (anti-epidermal growth factor receptor (EGFR), Cetuximab). The cytotoxicity revealed that only DOX-containing nanosystems showed significant and even competitive cytotoxicity when compared to that of free DOX. Interestingly, surface modification with AZM-SH promoted an increased cellular uptake in the HCT116 cell line, surpassing even those functionalized with Cetuximab. The results show that the new target has high potential to be used as a nanotherapy agent for CRC cells, surpassing commercial targets. As a proof-of-concept, an oral administration form of NANO3 systems was successfully combined with Eudragit® enteric coating and studied under extreme conditions.
Collapse
Affiliation(s)
- Gonçalo A. Marcelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - David Montpeyó
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Joana Galhano
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| |
Collapse
|
13
|
Wu F, Wu Z, Wang X, Liu Y, Ye Q. High-Precision Detection of Cellular Drug Response Based on SERS Spectrum and Multivariate Statistical Analysis. BIOSENSORS 2023; 13:241. [PMID: 36832007 PMCID: PMC9954555 DOI: 10.3390/bios13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of personalized medicine places high demands on the control of drug dose and cellular drug response to provide patients with better curative effects and low side effects. To solve the problem of low detection accuracies of the cell-counting kit-8 (CCK8) method, a detection method based on surface-enhanced Raman spectroscopy (SERS) of cell-secreted proteins was adopted to evaluate the concentration of the anticancer drug cisplatin and the cellular drug response of nasopharyngeal carcinoma. CNE1 and NP69 cell lines were used to evaluate cisplatin response. The results showed that the combination of the SERS spectrum with principal component analysis-linear discriminant analysis could detect the difference in the response of cisplatin with a concentration difference of 1 μg/mL, which considerably exceeded that of CCK8. In addition, the SERS spectral peak intensity of the cell-secreted proteins strongly correlated with the cisplatin concentration. Furthermore, the mass spectrum of the secreted proteins of the nasopharyngeal carcinoma cells was analyzed to verify the results obtained using the SERS spectrum. The results demonstrated that SERS of secreted proteins has great potential for high-precision detection of chemotherapeutic drug response.
Collapse
Affiliation(s)
- Fengfang Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Otolaryngology, Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Zhiwei Wu
- Department of Otolaryngology, Head and Neck Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xiaoyan Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Yunliang Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Qing Ye
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Otolaryngology, Head and Neck Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
14
|
Eradication of KRAS mutant colorectal adenocarcinoma by PEGylated gold nanoparticles-cetuximab conjugates through ROS-dependent apoptosis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
16
|
Lyu N, Pedersen B, Shklovskaya E, Rizos H, Molloy MP, Wang Y. SERS characterization of colorectal cancer cell surface markers upon anti-EGFR treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210176. [PMID: 37323700 PMCID: PMC10190927 DOI: 10.1002/exp.20210176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed and the second lethal cancer worldwide. Approximately 30-50% of CRC are driven by mutations in the KRAS oncogene, which is a strong negative predictor for response to anti-epidermal growth factor receptor (anti-EGFR) therapy. Examining the phenotype of KRAS mutant and wild-type (WT) CRC cells in response to anti-EGFR treatment may provide significant insights into drug response and resistance. Herein, surface-enhanced Raman spectroscopy (SERS) assay was applied to phenotype four cell surface proteins (EpCAM, EGFR, HER2, HER3) in KRAS mutant (SW480) and WT (SW48) cells over a 24-day time course of anti-EGFR treatment with cetuximab. Cell phenotypes were obtained using Raman reporter-coated and antibody-conjugated gold nanoparticles (SERS nanotags), where a characteristic Raman spectrum was generated upon single laser excitation, reflecting the presence of the targeted surface marker proteins. Compared to the KRAS mutant cells, KRAS WT cells were more sensitive to anti-EGFR treatment and displayed a significant decrease in HER2 and HER3 expression. The SERS results were validated with flow cytometry, confirming the SERS assay is promising as an alternative method for multiplexed characterization of cell surface biomarkers using a single laser excitation system.
Collapse
Affiliation(s)
- Nana Lyu
- ARC Center of Excellence for Nanoscale BioPhotonics and School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Bernadette Pedersen
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Elena Shklovskaya
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Kolling InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Yuling Wang
- ARC Center of Excellence for Nanoscale BioPhotonics and School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
17
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
18
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
19
|
Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. MATERIALS 2022; 15:ma15093355. [PMID: 35591689 PMCID: PMC9105202 DOI: 10.3390/ma15093355] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.
Collapse
|
20
|
Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules 2022; 27:molecules27092981. [PMID: 35566331 PMCID: PMC9099628 DOI: 10.3390/molecules27092981] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a usual digestive tract malignancy and the third main cause of cancer death around the world, with a high occurrence rate and mortality rate. Conventional therapies for CRC have certain side effects and restrictions. However, the exciting thing is that with the rapid development of nanotechnology, nanoparticles have gradually become more valuable drug delivery systems than traditional therapies because of their capacity to control drug release and target CRC. This also promotes the application of nano-drug targeted delivery systems in the therapy of CRC. Moreover, to make nanoparticles have a better colon targeting effect, many approaches have been used, including nanoparticles targeting CRC and in response to environmental signals. In this review, we focus on various targeting mechanisms of CRC-targeted nanoparticles and their latest research progress in the last three years, hoping to give researchers some inspiration on the design of CRC-targeted nanoparticles.
Collapse
|
21
|
Study on Extraction and Antioxidant Activity of Flavonoids from Hemerocallis fulva (Daylily) Leaves. Molecules 2022; 27:molecules27092916. [PMID: 35566266 PMCID: PMC9104616 DOI: 10.3390/molecules27092916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hemerocallis fulva is a medical and edible plant. In this study, we optimized the ultrasound-assisted extraction (UAE) process of extracting flavonoids from Hemerocallis fulva leaves by single-factor experiments and response surface methodology (RSM). The optimum extraction conditions generating the maximal total flavonoids content was as follows: 70.6% ethanol concentration; 43.9:1 mL/g solvent to sample ratio; 61.7 °C extraction temperature. Under the optimized extraction conditions, the total flavonoid content (TFC) in eight Hemerocallis fulva varieties were determined, and H. fulva (L.) L. var. kwanso Regel had the highest TFC. The cytotoxicity of the extract was studied using the Cell Counting Kit-8 (CCK-8 assay). When the concentration was less than 1.25 mg/mL, the extract had no significant cytotoxicity to HaCaT cells. The antioxidant activity was measured via chemical antioxidant activity methods in vitro and via cellular antioxidant activity methods. The results indicated that the extract had a strong ABTS and •OH radical scavenging activity. Additionally, the extract had an excellent protective effect against H2O2-induced oxidative damage at a concentration of 1.25 mg/mL, which could effectively reduce the level of ROS to 106.681 ± 9.733% (p < 0.001), compared with the 163.995 ± 6.308% of the H2O2 group. We identified five flavonoids in the extracts using high-performance liquid chromatography (HPLC). Infrared spectroscopy indicated that the extract contained the structure of flavonoids. The results showed that the extract of Hemerocallis fulva leaves had excellent biocompatibility and antioxidant activity, and could be used as a cheap and potential source of antioxidants in the food, cosmetics, and medicine industries.
Collapse
|
22
|
Janani B, Vijayakumar M, Priya K, Kim JH, Prabakaran DS, Shahid M, Al-Ghamdi S, Alsaidan M, Othman Bahakim N, Hassan Abdelzaher M, Ramesh T. EGFR-Based Targeted Therapy for Colorectal Cancer—Promises and Challenges. Vaccines (Basel) 2022; 10:vaccines10040499. [PMID: 35455247 PMCID: PMC9030067 DOI: 10.3390/vaccines10040499] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinoma (CRC) is the most lethal and common form of cancer in the world. It was responsible for almost 881,000 cancer deaths in 2018. Approximately 25% of cases are diagnosed at advanced stages with metastasis—this poses challenges for effective surgical control and future tumor-related mortality. There are numerous diagnostic methods that can be used to reduce the risk of colorectal carcinoma. Among these, targeted nanotherapy aims to eliminate the tumor and any metastasis. Active targeting can increase the effectiveness and quantity of drugs delivered to the target site. Antibodies that target overexpressed receptors on cell surfaces and indicators are coupled with drug-loaded carriers. The major target receptors of chemotherapeutic drugs delivery include VEGFR, EGFR, FGFR, HER2, and TGF. On account of its major and diverse roles in cancer, it is important to target EGFR in particular for better tumor selection, as EGFR is overexpressed in 25 to 82% of colorectal carcinoma cases. The EGFR monoclonal immunoglobulins cetuximab/panitumumab can thus be used to treat colorectal cancer. This review examines carriers that contain cetuximab-conjugated therapeutic drugs as well as their efficacy in anticancer activities.
Collapse
Affiliation(s)
- Balakarthikeyan Janani
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
| | - Mayakrishnan Vijayakumar
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 05006, Korea; (M.V.); (J.H.K.)
| | - Kannappan Priya
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
- Correspondence: (K.P.); (T.R.)
| | - Jin Hee Kim
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 05006, Korea; (M.V.); (J.H.K.)
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea;
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
| | - Sameer Al-Ghamdi
- Family and Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed Alsaidan
- Internal Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nasraddin Othman Bahakim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
| | - Mohammad Hassan Abdelzaher
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
- Department of Medical Biochemistry, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut 71515, Egypt
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
- Correspondence: (K.P.); (T.R.)
| |
Collapse
|
23
|
Aldahhan R, Almohazey D, Khan FA. Emerging trends in the application of gold nanoformulations in colon cancer diagnosis and treatment. Semin Cancer Biol 2021; 86:1056-1065. [PMID: 34843989 DOI: 10.1016/j.semcancer.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is one of the most aggressive types of cancer with about two million new cases and one million deaths in 2020. The side effects of the available chemotherapies and the possibility of developing resistance against treatment highlight the importance of developing new therapeutic options. The development in the field of nanotechnology have introduced the application of nanoparticles (NPs) as a promising approach in the diagnosis and treatments of colorectal cancer and other types of cancer. Gold nanoparticles (AuNPs) are currently one of the most studied materials as they possess unique tunable properties allowing them to play a role in colorectal cancer bioimaging, diagnosis, and therapy. The high surface-to-volume ratio of AuNPs mediates their utilization in drug delivery as well as functionalization to provide specific targeting. Moreover, depending on their physical properties (size, shape), AuNPs can be modified to fit the intended application. However, there are contradictory results around the pharmacokinetics of AuNPs including their biodistribution, clearance, and toxicity. This variation of opinions is most likely due to the development of different AuNPs that vary in shape, size, and surface chemistry, in addition to the conditions under which each research was carried out. The conflicting data represent a challenge in the clinical use of AuNPs suggesting the need to understand the toxicity, fate, and long-term exposure of AuNPs in vivo. Thus, there is an unmet need for the establishment of a publicly available data base for extensive analysis. In this review, we discuss the recent advances in AuNP applications in the treatment and diagnosis of colorectal cancer, mechanisms of action, and clinical challenges.
Collapse
Affiliation(s)
- Razan Aldahhan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
24
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|