1
|
Singha Roy SJ, Loynd C, Jewel D, Canarelli SE, Ficaretta ED, Pham QA, Weerapana E, Chatterjee A. Photoredox-Catalyzed Labeling of Hydroxyindoles with Chemoselectivity (PhotoCLIC) for Site-Specific Protein Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202300961. [PMID: 37219923 PMCID: PMC10330600 DOI: 10.1002/anie.202300961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 05/24/2023]
Abstract
We have developed a novel visible-light-catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site-specifically installed 5-hydroxytryptophan residue (5HTP) on full-length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light-emitting diodes (455/650 nm) for rapid site-specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen-dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain-promoted azide-alkyne click reaction, enables site-specific dual-labeling of a target protein.
Collapse
Affiliation(s)
| | - Conor Loynd
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Sarah E Canarelli
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Quan A Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
2
|
Machin L, Piontek M, Todhe S, Staniek K, Monzote L, Fudickar W, Linker T, Gille L. Antileishmanial Anthracene Endoperoxides: Efficacy In Vitro, Mechanisms and Structure-Activity Relationships. Molecules 2022; 27:6846. [PMID: 36296439 PMCID: PMC9612231 DOI: 10.3390/molecules27206846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by protozoal Leishmania parasites. Previous studies have shown that endoperoxides (EP) can selectively kill Leishmania in host cells. Therefore, we studied in this work a set of new anthracene-derived EP (AcEP) together with their non-endoperoxidic analogs in model systems of Leishmania tarentolae promastigotes (LtP) and J774 macrophages for their antileishmanial activity and selectivity. The mechanism of effective compounds was explored by studying their reaction with iron (II) in chemical systems and in Leishmania. The correlation of structural parameters with activity demonstrated that in this compound set, active compounds had a LogPOW larger than 3.5 and a polar surface area smaller than 100 Å2. The most effective compounds (IC50 in LtP < 2 µM) with the highest selectivity (SI > 30) were pyridyl-/tert-butyl-substituted AcEP. Interestingly, also their analogs demonstrated activity and selectivity. In mechanistic studies, it was shown that EP were activated by iron in chemical systems and in LtP due to their EP group. However, the molecular structure beyond the EP group significantly contributed to their differential mitochondrial inhibition in Leishmania. The identified compound pairs are a good starting point for subsequent experiments in pathogenic Leishmania in vitro and in animal models.
Collapse
Affiliation(s)
- Laura Machin
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
- Pharmacy Department, Institute of Pharmacy and Food Sciences, University of Havana, Havana 13600, Cuba
| | - Martin Piontek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sara Todhe
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Katrin Staniek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, Havana 11400, Cuba
| | - Werner Fudickar
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Torsten Linker
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
3
|
Aerssens D, Cadoni E, Tack L, Madder A. A Photosensitized Singlet Oxygen ( 1O 2) Toolbox for Bio-Organic Applications: Tailoring 1O 2 Generation for DNA and Protein Labelling, Targeting and Biosensing. Molecules 2022; 27:778. [PMID: 35164045 PMCID: PMC8838016 DOI: 10.3390/molecules27030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.
Collapse
Affiliation(s)
| | | | | | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium; (D.A.); (E.C.); (L.T.)
| |
Collapse
|
4
|
Affiliation(s)
- Werner Fudickar
- Department of Chemistry University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Torsten Linker
- Department of Chemistry University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| |
Collapse
|
5
|
Fudickar W, Bauch M, Ihmels H, Linker T. DNA-Triggered Enhancement of Singlet Oxygen Production by Pyridinium Alkynylanthracenes. Chemistry 2021; 27:13591-13604. [PMID: 34263955 DOI: 10.1002/chem.202101918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/23/2022]
Abstract
There is an ongoing interest in 1 O2 sensitizers, whose activity is selectively controlled by their interaction with DNA. To this end, we synthesized three isomeric pyridinium alkynylanthracenes 2 o-p and a water-soluble trapping reagent for 1 O2 . In water and in the absence of DNA, these dyes show a poor efficiency to sensitize the photooxygenation of the trapping reagent as they decompose due to electron transfer processes. In contrast, in the presence of DNA 1 O2 is generated from the excited DNA-bound ligand. The interactions of 2 o-p with DNA were investigated by thermal DNA melting studies, UV/vis and fluorescence spectroscopy, and linear and circular dichroism spectroscopy. Our studies revealed an intercalative binding with an orientation of the long pyridyl-alkynyl axis parallel to the main axis of the DNA base pairs. In the presence of poly(dA : dT), all three isomers show an enhanced formation of singlet oxygen, as indicated by the reaction of the latter with the trapping reagent. With green light irradiation of isomer 2 o in poly(dA : dT), the conversion rate of the trapping reagent is enhanced by a factor >10. The formation of 1 O2 was confirmed by control experiments under anaerobic conditions, in deuterated solvents, or by addition of 1 O2 quenchers. When bound to poly(dG : dC), the opposite effect was observed only for isomers 2 o and 2 m, namely the trapping reagent reacted significantly slower. Overall, we showed that pyridinium alkynylanthracenes are very useful intercalators, that exhibit an enhanced photochemical 1 O2 generation in the DNA-bound state.
Collapse
Affiliation(s)
- Werner Fudickar
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Marcel Bauch
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
6
|
De Bonfils P, Verron E, Nun P, Coeffard V. Photoinduced Storage and Thermal Release of Singlet Oxygen from 1,2‐Dihydropyridine Endoperoxides. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Paul De Bonfils
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | - Elise Verron
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | - Pierrick Nun
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | | |
Collapse
|