1
|
Moll L, Klein A, Heidemann SJ, Völkering G, Rumpf J, Pude R. Improving Mechanical Performance of Self-Binding Fiberboards from Untreated Perennial Low-Input Crops by Variation of Particle Size. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3982. [PMID: 39203162 PMCID: PMC11355808 DOI: 10.3390/ma17163982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Studies on self-binding hot-pressed fiberboards using agricultural byproducts aim to identify alternatives to scarce wood resources. Particle size and mixture significantly impact strength, although direct comparisons are difficult due to differences in study methods. We evaluated fiberboards made from the two perennial biomass crops Miscanthus and Paulownia and compared them to Picea (spruce), using five distinct particle size blends prepared from milled and sieved particles, respectively. The boards were evaluated for their modulus of elasticity, modulus of rupture, reaction to fire, water absorption, and thickness swelling. All specimens exhibited normal ignitability, as defined by Euroclass E according to EN13501-1. The results indicate that mechanical performance improves with increasing density, which correlates with higher proportions of finer particles. Notably, the finer Miscanthus blends and all Paulownia samples met the modulus of elasticity requirements of EN 622.
Collapse
Affiliation(s)
- Lüders Moll
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf, Klein-Altendorf 2, D-53359 Rheinbach, Germany (R.P.)
| | - Alexander Klein
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf, Klein-Altendorf 2, D-53359 Rheinbach, Germany (R.P.)
| | - Sören Jannis Heidemann
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf, Klein-Altendorf 2, D-53359 Rheinbach, Germany (R.P.)
| | - Georg Völkering
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf, Klein-Altendorf 2, D-53359 Rheinbach, Germany (R.P.)
| | - Jessica Rumpf
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf, Klein-Altendorf 2, D-53359 Rheinbach, Germany (R.P.)
| | - Ralf Pude
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf, Klein-Altendorf 2, D-53359 Rheinbach, Germany (R.P.)
- Field Lab Campus Klein-Altendorf, Faculty of Agriculture, University of Bonn, Klein-Altendorf 2, D-53359 Rheinbach, Germany
| |
Collapse
|
2
|
Morales‐Huerta JC, Hernández‐Meléndez O, Garcés‐Sandoval FI, Montiel C, Hernández‐Luna MG, Manero O, Bárzana E, Vivaldo‐Lima E. Modeling of Pretreatment and Combined Alkaline and Enzymatic Hydrolyses of Blue Agave Bagasse in Corotating Twin‐screw Extruders. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juan Carlos Morales‐Huerta
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| | - Oscar Hernández‐Meléndez
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| | - Fernando Iván Garcés‐Sandoval
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| | - Carmina Montiel
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
- Facultad de Química Departamento de Alimentos y Biotecnología Universidad Nacional Autónoma de México CU México City 04510 México
| | | | - Octavio Manero
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México CU México City 04510 México
| | - Eduardo Bárzana
- Facultad de Química Departamento de Alimentos y Biotecnología Universidad Nacional Autónoma de México CU México City 04510 México
| | - Eduardo Vivaldo‐Lima
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| |
Collapse
|
3
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|