1
|
Xuan Z, Wang K, Duan F, Lu L. Non-carrier immobilization of yeast cells by genipin crosslinking for the synthesis of prebiotic galactooligosaccharides from plant-derived galactose. Int J Biol Macromol 2024; 277:133991. [PMID: 39089904 DOI: 10.1016/j.ijbiomac.2024.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Galactooligosaccharides (GOS), as mimics of human milk oligosaccharides, are important prebiotics for modulating the ecological balance of intestinal microbiota. A novel carrier-free cell immobilization method was established using genipin to cross-link Kluyveromyces lactis CGMCC 2.1494, which produced β-galactosidase, an enzyme essential for GOS synthesis. The resulting immobilized cells were characterized as stable by thermogravimetric analysis and confirmed to be crosslinked through scanning electron microscopy analysis (SEM) and Fourier transform infrared spectroscopy (FTIR). The Km and Vmax values of β-galactosidase in immobilized cells towards o-nitrophenyl β-D-galactoside were determined to be 3.446 mM and 2210 μmol min-1 g-1, respectively. The enzyme in the immobilized showed higher thermal and organic solvent tolerance compared to that in free cells. The immobilized cells were subsequently employed for GOS synthesis using plant-derived galactose as the substrate. The synthetic reaction conditions were optimized through both single-factor experiments and response surface methodology, resulting in a high yield of 49.1 %. Moreover, the immobilized cells showed good reusability and could be reused for at least 20 batches of GOS synthesis, with the enzyme activity remaining above 70 % at 35 °C.
Collapse
Affiliation(s)
- Zehui Xuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Bouguerra OM, Wahab RA, Huyop F, Al-Fakih AM, Mahmood WMAW, Mahat NA, Sabullah MK. An Overview of Crosslinked Enzyme Aggregates: Concept of Development and Trends of Applications. Appl Biochem Biotechnol 2024; 196:5711-5739. [PMID: 38180645 DOI: 10.1007/s12010-023-04809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/06/2024]
Abstract
Enzymes are commonly used as biocatalysts for various biological and chemical processes in industrial applications. However, their limited operational stability, catalytic efficiency, poor reusability, and high-cost hamper further industrial usage. Thus, crosslinked enzyme aggregates (CLEAs) are developed as a better enzyme immobilization tool to extend the enzymes' operational stability. This immobilization method is appealing because it is simpler due to the absence of ballast and permits the collective use of crude enzyme cocktails. CLEAs, so far, have been successfully developed using a variety of enzymes, viz., hydrolases, proteases, amidases, lipases, esterases, and oxidoreductase. Recent years have seen the emergence of novel strategies for preparing better CLEAs, which include the combi- and multi-CLEAs, magnetics CLEAs, and porous CLEAs for various industrial applications, viz., laundry detergents, organic synthesis, food industries, pharmaceutical applications, oils, and biodiesel production. To better understand the different strategies for CLEAs' development, this review explores these strategies and highlights the relevant concerns in designing innovative CLEAs. This article also details the challenges faced during CLEAs preparation and solutions for overcoming them. Finally, the trending strategies to improve the preparation of CLEAs alongside their industrial application trends are also discussed.
Collapse
Affiliation(s)
- Oumaima Maroua Bouguerra
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia.
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Malaysia.
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | - Abdo Mohammed Al-Fakih
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | - Wan Muhd Asyraf Wan Mahmood
- Centre of Foundation Studies, Dengkil Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, 43800, Dengkil, Selangor, Malaysia
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | - Mohd Khalizan Sabullah
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
3
|
Jing W, Hou F, Wu X, Zheng M, Zheng Y, Lu F, Liu F. A Critical Review on Immobilized Sucrose Isomerase and Cells for Producing Isomaltulose. Foods 2024; 13:1228. [PMID: 38672899 PMCID: PMC11048954 DOI: 10.3390/foods13081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Isomaltulose is a novel sweetener and is considered healthier than the common sugars, such as sucrose or glucose. It has been internationally recognized as a safe food product and holds vast potential in pharmaceutical and food industries. Sucrose isomerase is commonly used to produce isomaltulose from the substrate sucrose in vitro and in vivo. However, free cells/enzymes were often mixed with the product, making recycling difficult and leading to a significant increase in production costs. Immobilized cells/enzymes have the following advantages including easy separation from products, high stability, and reusability, which can significantly reduce production costs. They are more suitable than free ones for industrial production. Recently, immobilized cells/enzymes have been encapsulated using composite materials to enhance their mechanical strength and reusability and reduce leakage. This review summarizes the advancements made in immobilized cells/enzymes for isomaltulose production in terms of refining traditional approaches and innovating in materials and methods. Moreover, innovations in immobilized enzyme methods include cross-linked enzyme aggregates, nanoflowers, inclusion bodies, and directed affinity immobilization. Material innovations involve nanomaterials, graphene oxide, and so on. These innovations circumvent challenges like the utilization of toxic cross-linking agents and enzyme leakage encountered in traditional methods, thus contributing to enhanced enzyme stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; (W.J.); (F.H.); (X.W.); (M.Z.); (Y.Z.); (F.L.)
| |
Collapse
|
4
|
Bai X, Sun X, Yu Y, Guo Y, Nian L, Cao C, Cheng S. Immobilization of α-galactosidase in polyvinyl alcohol-chitosan-glycidyl methacrylate hydrogels based on directional freezing-assisted salting-out strategy for hydrolysis of RFOs. Int J Biol Macromol 2023; 242:124808. [PMID: 37211074 DOI: 10.1016/j.ijbiomac.2023.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Raffinose family oligosaccharides (RFOs) in food are the main factors causing flatulence in Irritable Bowel Syndrome (IBS) patients and the development of effective approaches for reducing food-derived RFOs is of paramount importance. In this study, polyvinyl alcohol (PVA)-chitosan (CS)-glycidyl methacrylate (GMA) immobilized α-galactosidase was prepared by the directional freezing-assisted salting-out technique, aimed to hydrolyze RFOs. SEM, FTIR, XPS, fluorescence and UV characterization results demonstrated that α-galactosidase was successfully cross-linked in the PVA-CS-GMA hydrogels, forming a distinct porous stable network through the covalent bond between the enzyme and the carrier. Mechanical performance and swelling capacity analysis illustrated that α-gal @ PVA-CS-GMA not only had suitable strength and toughness for longer durability, but also exhibited high water content and swelling capacity for better retention of catalytic activity. The enzymatic properties of α-gal @ PVA-CS-GMA showed an improved Km value, pH and temperature tolerance range, anti-enzymatic inhibitor (melibiose) activity compared to the free α-galactosidase and its reusability was at least 12 times with prolonged storage stability. Finally, it was successfully applied in the hydrolysis of RFOs in soybeans. These findings provide a new strategy for the development of α-galactosidase immobilization system to biological transform the RFOs components in the food for diet intervention of IBS.
Collapse
Affiliation(s)
- Xixi Bai
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyang Sun
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yu
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuheng Guo
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Linyu Nian
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Duan F, Sun T, Zhang J, Wang K, Wen Y, Lu L. Recent innovations in immobilization of β-galactosidases for industrial and therapeutic applications. Biotechnol Adv 2022; 61:108053. [DOI: 10.1016/j.biotechadv.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|