1
|
Kowalska J, Maćkiw E, Korsak D, Postupolski J. Characterization of the Bacillus cereus Group Isolated from Ready-to-Eat Foods in Poland by Whole-Genome Sequencing. Foods 2024; 13:3266. [PMID: 39456328 PMCID: PMC11506886 DOI: 10.3390/foods13203266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bacillus cereus sensu lato can contaminate food and cause food poisoning by producing toxins such as cereulide, toxin BL, and cytotoxin K. In this study, we retrospectively analyzed B. cereus sensu lato from retail food products and food poisoning cases using PCR methods to determine their virulence profiles. A new toxin profile, encoding all four toxins (hbl, nhe, cytK, ces), was found in 0.4% of isolates. The toxin profiles, classified into A-J, revealed that 91.8% harbored nhe genes, while hbl, cytK, and ces were detected in 43.8%, 46.9%, and 4.2% of isolates, respectively. Whole-genome sequencing (WGS) identified four distinct species within the B. cereus group, with 21 isolates closely related to B. cereus sensu stricte, 25 to B. mosaicus, 2 to B. toyonensis, and 1 to B. mycoides. Three novel sequence types (STs 3297, 3298, 3299) were discovered. Antibiotic resistance genes were common, with 100% of isolates carrying beta-lactam resistance genes. Fosfomycin (80%), vancomycin (8%), streptothricin (6%), tetracycline (4%), and macrolide resistance (2%) genes were also detected. These results highlight the genetic diversity and antibiotic resistance potential of B. cereus sensu lato strains in Polish food products.
Collapse
Affiliation(s)
- Joanna Kowalska
- National Institute of Public Health NIH-National Research Institute, Department of Food Safety, Laboratory of Food Microbiology, 00-791 Warsaw, Poland; (E.M.); (D.K.); (J.P.)
| | | | | | | |
Collapse
|
2
|
Liuu S, Damont A, Perret A, Firmesse O, Becher F, Lavison-Bompard G, Hueber A, Woods AS, Darii E, Fenaille F, Tabet JC. Origin and characterization of cyclodepsipeptides: Comprehensive structural approaches with focus on mass spectrometry analysis of alkali-cationized molecular species. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39166474 DOI: 10.1002/mas.21904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Cyclodepsipeptides (CDPs) represent a huge family of chemically and structurally diverse molecules with a wide ability for molecular interactions. CDPs are cyclic peptide-related natural products made up of both proteinogenic and nonproteinogenic amino acids linked by amide and ester bonds. The combined use of different analytical methods is required to accurately determine their integral structures including stereochemistry, thus allowing deeper insights into their often-intriguing bioactivities and their possible usefulness. Our goal is to present the various methods developed to accurately characterize CDPs. Presently, Marfey's method and NMR (nuclear magnetic resonance) are still considered the best for characterizing CDP configuration. Nevertheless, electrospray-high resolution tandem mass spectrometry (ESI-HRMS/MS) is of great value for efficiently resolving CDP's composition and sequences. For instance, recent data shows that the fragmentation of cationized CDPs (e.g., [M + Li]+ and [M + Na]+) leads to selective cleavage of ester bonds and specific cationized product ions (b series) useful to get unprecedented sequence information. Thus, after a brief presentation of their structure, biological functions, and biosynthesis, we also provide a historic overview of these various analytical approaches as well as their advantages and limitations with a special emphasis on the emergence of methods based on HRMS/MS through recent fundamental works and applications.
Collapse
Affiliation(s)
- Sophie Liuu
- Staphylococcus, Bacillus & Clostridium (SBCL) unit, Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, Maisons-Alfort, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA-INRAE, Laboratoire Innovations en Spectrométrie de Masse pour la Santé (LI-MS), DRF/Institut Joliot/DMTS/SPI, MetaboHUB, CEA Saclay, Gif sur Yvette, France
| | - Alain Perret
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Olivier Firmesse
- Staphylococcus, Bacillus & Clostridium (SBCL) unit, Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, Maisons-Alfort, France
| | - François Becher
- Université Paris-Saclay, CEA-INRAE, Laboratoire Innovations en Spectrométrie de Masse pour la Santé (LI-MS), DRF/Institut Joliot/DMTS/SPI, MetaboHUB, CEA Saclay, Gif sur Yvette, France
| | - Gwenaëlle Lavison-Bompard
- Pesticides and Marine Biotoxins (PBM) unit, Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, Maisons-Alfort, France
| | - Amandine Hueber
- Staphylococcus, Bacillus & Clostridium (SBCL) unit, Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, Maisons-Alfort, France
| | - Amina S Woods
- National Institute on Drug Abuse Intramural Research Program (NIDA IRP), National Institute of Health (NIH), Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Pharmacology and Molecular Sciences, Baltimore, Maryland, USA
| | - Ekaterina Darii
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - François Fenaille
- Université Paris-Saclay, CEA-INRAE, Laboratoire Innovations en Spectrométrie de Masse pour la Santé (LI-MS), DRF/Institut Joliot/DMTS/SPI, MetaboHUB, CEA Saclay, Gif sur Yvette, France
| | - Jean-Claude Tabet
- Université Paris-Saclay, CEA-INRAE, Laboratoire Innovations en Spectrométrie de Masse pour la Santé (LI-MS), DRF/Institut Joliot/DMTS/SPI, MetaboHUB, CEA Saclay, Gif sur Yvette, France
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Kranzler M, Walser V, Stark TD, Ehling-Schulz M. A poisonous cocktail: interplay of cereulide toxin and its structural isomers in emetic Bacillus cereus. Front Cell Infect Microbiol 2024; 14:1337952. [PMID: 38596651 PMCID: PMC11002159 DOI: 10.3389/fcimb.2024.1337952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Food intoxications evoked by emetic Bacillus cereus strains constitute a serious threat to public health, leading to emesis and severe organ failure. The emetic peptide toxin cereulide, assembled by the non-ribosomal peptide synthetase CesNRPS, cannot be eradicated from contaminated food by usual hygienic measures due to its molecular size and structural stability. Next to cereulide, diverse chemical variants have been described recently that are produced concurrently with cereulide by CesNRPS. However, the contribution of these isocereulides to the actual toxicity of emetic B. cereus, which produces a cocktail of these toxins in a certain ratio, is still elusive. Since cereulide isoforms have already been detected in food remnants from foodborne outbreaks, we aimed to gain insights into the composition of isocereulides and their impact on the overall toxicity of emetic B. cereus. The amounts and ratios of cereulide and isocereulides were determined in B. cereus grown under standard laboratory conditions and in a contaminated sample of fried rice balls responsible for one of the most severe food outbreaks caused by emetic B. cereus in recent years. The ratios of variants were determined as robust, produced either under laboratory or natural, food-poisoning conditions. Examination of their actual toxicity in human epithelial HEp2-cells revealed that isocereulides A-N, although accounting for only 10% of the total cereulide toxins, were responsible for about 40% of the total cytotoxicity. An this despite the fact that some of the isocereulides were less cytotoxic than cereulide when tested individually for cytotoxicity. To estimate the additive, synergistic or antagonistic effects of the single variants, each cereulide variant was mixed with cereulide in a 1:9 and 1:1 binary blend, respectively, and tested on human cells. The results showed additive and synergistic impacts of single variants, highlighting the importance of including not only cereulide but also the isocereulides in routine food and clinical diagnostics to achieve a realistic toxicity evaluation of emetic B. cereus in contaminated food as well as in patient samples linked to foodborne outbreaks. Since the individual isoforms confer different cell toxicity both alone and in association with cereulide, further investigations are needed to fully understand their cocktail effect.
Collapse
Affiliation(s)
- Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Walser
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Timo D. Stark
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Yang S, Wang Y, Liu Y, Jia K, Zhang Z, Dong Q. Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions. Foods 2023; 12:833. [PMID: 36832907 PMCID: PMC9956921 DOI: 10.3390/foods12040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road No. 334, Yangpu District, Shanghai 200093, China
| |
Collapse
|
5
|
Bacillus cereus Toxin Repertoire: Diversity of (Iso)cereulide(s). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030872. [PMID: 35164132 PMCID: PMC8840689 DOI: 10.3390/molecules27030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The emetic Bacillus cereus toxin cereulide (1) poses a significant safety risk in the food industry, causing emesis and nausea after consumption of contaminated foods. Analogously to cereulide, the structures of various isocereulides, namely, isocereulides A–G, have been recently reported and could also be identified in B. cereus-contaminated food samples. The HPLC fractionation of B. cereus extracts allows us to isolate additional isocereulides. By applying MSn sequencing, post-hydrolytic dipeptide, amino acid and α-hydroxy acid analyses using UPLC-ESI-TOF-MS to purify the analytes, seven new isocereulides H–N (2–8) could be elucidated in their chemical structures. The structure elucidation was supported by one-dimensional and two-dimensional NMR spectra of the isocereulides H (2), K (5), L and N (6 + 8) and M (7). The toxicity of 2–8 was investigated in a HEp-2 cell assay to determine their respective 50% effective concentration (EC50). Thus, 2–8 exhibited EC50 values ranging from a 0.4- to 1.4-fold value compared to cereulide (1). Missing structure-activity correlations indicate the necessity to determine the toxic potential of all naturally present isocereulides as single compounds to be able to perform a thorough toxicity evaluation of B. cereus-contaminated foods in the future.
Collapse
|
6
|
Walser V, Kranzler M, Dawid C, Ehling-Schulz M, Stark TD, Hofmann TF. Distribution of the Emetic Toxin Cereulide in Cow Milk. Toxins (Basel) 2021; 13:toxins13080528. [PMID: 34437398 PMCID: PMC8402402 DOI: 10.3390/toxins13080528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus cereus is frequently associated with food-borne intoxications, and its emetic toxin cereulide causes emesis and nausea after consumption of contaminated foods. The major source for contamination is found within contaminated raw materials containing the highly chemically resistant cereulide, independent of vegetative bacteria cells. Up to date, non-existing removal strategies for cereulide evoke the question of how the toxin is distributed within a food sample, especially cow milk. Milk samples with different milk fat contents were incubated with purified cereulide, separated by centrifugation into a lipid and an aqueous phase, and cereulide was quantified in both fractions by SIDA-LC-MS/MS. By artificially increasing the milk fat content from 0.5% to 50%, the amount of cereulide recovered in the lipid phase and could be augmented from 13.3 to 78.6%. Further, the ratio of cereulide increased in the lipid phase of milk with additional plant-based lipid (sunflower oil) to 47.8%. This demonstrated a clear affinity of cereulide towards the hydrophobic, lipid phase, aligning with cereulide's naturally strong hydrophobic properties. Therefore, an intensified cereulide analysis of lipid enriched dairy products to prevent severe cereulide intoxications or cross-contamination in processed foods is suggested.
Collapse
Affiliation(s)
- Veronika Walser
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
| | - Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (M.E.-S.)
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (M.E.-S.)
| | - Timo D. Stark
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
- Correspondence: ; Tel.: +49-8161-71-2911
| | - Thomas F. Hofmann
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
| |
Collapse
|