1
|
Zhao Z, Rudman NA, Dmochowski IJ. A Site-Specific Cross-Linker for Visible-Light Control of Proteins. ACS OMEGA 2024; 9:29331-29338. [PMID: 39005769 PMCID: PMC11238208 DOI: 10.1021/acsomega.4c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 07/16/2024]
Abstract
There is a need for photochemical tools that allow precise control of protein structure and function with visible light. We focus here on the s-tetrazine moiety, which can be installed at a specific protein site via the reaction between dichlorotetrazine and two adjacent sulfhydryl groups. Tetrazine's compact size enables structural mimicry of native amino acid linkages, such as an intramolecular salt bridge or disulfide bond. In this study, we investigated tetrazine installation in three different proteins, where it was confirmed that the cross-linking reaction is highly efficient in aqueous conditions and site-specific when two cysteines are located proximally: the S-S distance was 4-10 Å. As shown in maltose binding protein, the tetrazine cross-linker can replace an interdomain salt bridge crucial for xenon binding and serve as a visible-light photoswitch to modulate 129Xe NMR contrast. This work highlights the ease of aqueous tetrazine bioconjugation and its applications for protein photoregulation.
Collapse
Affiliation(s)
- Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Nathan A Rudman
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Liu J, Yan P, Liu X, Long Z, Bing T, Zhang N, Shangguan D. Heptamethine Cyanine-Based Molecule Release Triggered by Mitochondrial ROS. ACS APPLIED BIO MATERIALS 2024; 7:362-368. [PMID: 38150719 DOI: 10.1021/acsabm.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Conditionally activated molecule release in live cells would provide spatiotemporal control for the study and intervention of biological processes, e.g., bioactive molecule monitoring and controlled drug release. Mitochondria are the main sites of reactive oxygen species (ROS) production in cells. Here, we report an ROS-triggered molecule release strategy in mitochondria. A molecule IRTO with dual targeting groups was designed by covalently linking IR-780 (a mitochondrial targeted heptamethine cyanine) and 4-aminobutyl-thiazole orange (NH2-TO, a nuclear dye). IRTO diffused into live cells and first accumulated in mitochondria. As the cyanine moiety reacted with mitochondrial ROS directly or with the help of mitochondrial cytochromes, NH2-TO was released, escaped from mitochondria, and finally located in the nucleus. This process could be visualized by fluorescent imaging, i.e., red fluorescence (from the cyanine moiety of IRTO) first located in mitochondria, and green fluorescence (from NH2-TO) appeared and gradually enhanced in the nucleus with the increase of incubation time. The addition of H2O2 or lipopolysaccharide (LPS, an ROS accelerator) could accelerate the release of NH2-TO, whereas N-acetyl-l-cysteine (NAC, an ROS inhibitor) and mitoquinone mesylate (MitoQ, a mitochondrial ROS scavenger) could obviously decrease the release of NH2-TO. These results suggest that IRTO could serve as a fluorescent probe for monitoring ROS in mitochondria and that IR-780 might be a promising endogenous ROS-triggered molecule release platform.
Collapse
Affiliation(s)
- Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Yan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Wang Z, Fan X, Mu G, Zhao X, Wang Q, Wang J, Tang X. Cathepsin B-activatable cyclic antisense oligonucleotides for cell-specific target gene knockdown in vitro and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:548-558. [PMID: 37588686 PMCID: PMC10425675 DOI: 10.1016/j.omtn.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Trigger-activatable antisense oligonucleotides have been widely applied to regulate gene function. Among them, caged cyclic antisense oligonucleotides (cASOs) maintain a specific topology that temporarily inhibits their interaction with target genes. By inserting linkers that respond to cell-specific endogenous stimuli, they can be powerful tools and potential therapeutic agents for specific types of cancer cells with low off-target effects on normal cells. Here, we developed enzyme-activatable cASOs by tethering two terminals of linear antisense oligonucleotides through a cathepsin B (CB) substrate peptide (Gly-Phe-Leu-Gly [GFLG]), which could be efficiently uncaged by CB. CB-activatable cASOs were used to successfully knock down two disease-related endogenous genes in CB-abundant PC-3 tumor cells at the mRNA and protein levels but had much less effect on gene knockdown in CB-deficient human umbilical vein endothelial cell (HUVECs). In addition, reduced nonspecific immunostimulation was found using cASOs compared with their linear counterparts. Further in vivo studies indicated that CB-activatable cASOs showed effective tumor inhibition in PC-3 tumor model mice through downregulation of translationally controlled tumor protein (TCTP) protein in tumors. This study applies endogenous enzyme-activatable cASOs for antitumor therapy in tumor model mice, which demonstrates a promising stimulus-responsive cASO strategy for cell-specific gene knockdown upon endogenous activation and ASO prodrug development.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Guanqun Mu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic of China
| |
Collapse
|
4
|
Eyberg J, Ringenberg M, Richert C. Caging of a Strongly Pairing Fluorescent Thymidine Analog with Soft Nucleophiles. Chemistry 2023; 29:e202203289. [PMID: 36395348 PMCID: PMC10107337 DOI: 10.1002/chem.202203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Controlling the pairing strength of nucleobases in DNA through reactions with compounds found inside the cell is a formidable challenge. Here we report how a thiazolyl substituent turns a strongly pairing ethynylpyridone C-nucleoside into a reactive residue in oligonucleotides. The thiazolyl-bearing pyridone reacts with soft nucleophiles, such as glutathione, but not with hard nucleophiles like hydroxide or carbonate. The addition products pair much more weakly with adenine in a complementary strand than the starting material, and also change their fluorescence. This makes oligonucleotides containing the new deoxynucleoside interesting for controlled release. Due to its reactivity toward N, P, S, and Se-nucleophiles, and the visual signal accompanying chemical conversion, the fluorescent nucleotide reported here may also have applications in chemical biology, sensing and diagnostics.
Collapse
Affiliation(s)
- Juri Eyberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Mark Ringenberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Higashi SL, Isogami A, Takahashi J, Shibata A, Hirosawa KM, Suzuki KGN, Sawada S, Tsukiji S, Matsuura K, Ikeda M. Construction of a Reduction-responsive DNA Microsphere using a Reduction-cleavable Spacer based on a Nitrobenzene Scaffold. Chem Asian J 2022; 17:e202200142. [PMID: 35338588 DOI: 10.1002/asia.202200142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Indexed: 11/07/2022]
Abstract
Here, we describe the design and synthesis of a new reduction-cleavable spacer (RCS) based on a nitrobenzene scaffold for constructing reduction-responsive oligonucleotides according to standard phosphoramidite chemistry. In addition, we demonstrate that the introduction of the RCS in the middle of an oligonucleotide (30 nt) enables the construction of a self-assembled microsphere capable of exhibiting a reduction-responsive disassembly.
Collapse
Affiliation(s)
- Sayuri L Higashi
- Gifu University: Gifu Daigaku, United Graduate School of Drug Discovery and Medical Information Sciences, 1-1 Yanagido, Gifu, 501-1193, Gifu, JAPAN
| | - Ayaka Isogami
- Gifu University: Gifu Daigaku, Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, JAPAN
| | - Junko Takahashi
- Gifu University: Gifu Daigaku, Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, JAPAN
| | - Aya Shibata
- Gifu University: Gifu Daigaku, Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, JAPAN
| | - Koichiro M Hirosawa
- Gifu University: Gifu Daigaku, Institute for Glyco-core Research (iGCORE), JAPAN
| | - Kenichi G N Suzuki
- Gifu University: Gifu Daigaku, Institute for Glyco-core Research (iGCORE), JAPAN
| | - Shunsuke Sawada
- Nagoya Institute of Technology: Nagoya Kogyo Daigaku, Department of Nanopharmaceutical Sciences, JAPAN
| | - Shinya Tsukiji
- Nagoya Institute of Technology: Nagoya Kogyo Daigaku, Department of Nanopharmaceutical Sciences, JAPAN
| | - Kazunori Matsuura
- Tottori University: Tottori Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Masato Ikeda
- GIFU University, Chemistry and Biomolecular Science, 1-1, Yanagido, 501-1193, Gifu, JAPAN
| |
Collapse
|
6
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
7
|
Klimek R, Donlin-Asp PG, Polisseni C, Hanff V, Schuman EM, Heckel A. Visible light-activatable Q-dye molecular beacons for long-term mRNA monitoring in neurons. Chem Commun (Camb) 2021; 57:12683-12686. [PMID: 34780585 DOI: 10.1039/d1cc05664f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present a new class of Q-dye molecular beacons (MBs) that can be locally activated with visible light in hippocampal neurons. Our novel architecture increases the available monitoring time for neuronal mRNA from several minutes to 14 hours, since a lower light-sampling rate is required for tracking.
Collapse
Affiliation(s)
- Robin Klimek
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main 60438, Germany.
| | - Paul G Donlin-Asp
- Max Planck Institute for Brain Research, Max-von-Laue Str. 4, Frankfurt am Main 60438, Germany.
| | - Claudio Polisseni
- Max Planck Institute for Brain Research, Max-von-Laue Str. 4, Frankfurt am Main 60438, Germany.
| | - Vanessa Hanff
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main 60438, Germany.
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max-von-Laue Str. 4, Frankfurt am Main 60438, Germany.
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main 60438, Germany.
| |
Collapse
|
8
|
Hosoe Y, Sekiguchi H, Sasaki YC, Oda M. Structural dynamics of a DNA-binding protein analyzed using diffracted X-ray tracking. Biophys Chem 2021; 278:106669. [PMID: 34416518 DOI: 10.1016/j.bpc.2021.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Diffracted X-ray tracking (DXT) is one of methods for the real-time evaluation of protein structural dynamics by detecting the movement of a gold-nanocrystal attached to a target protein. However, one of the technical concerns is the size of the gold-nanocrystals, which are larger than the protein. In our previous results of mean square angular displacement curves in DXT analysis, dynamical movements of the DNA-binding protein, c-Myb R2R3, were observed in only one population in either DNA-unbound or -bound state, and was found to decrease upon DNA binding. In this study, c-Myb R2R3 dynamical movements were re-evaluated with a low density of the protein immobilized on the DXT substrate, to decrease the possibility that the gold-nanocrystals attached to more than one R2R3 molecule. We observed two dynamical moving populations in the DNA-bound state, which could be classified due to electrostatic attraction and repulsion between the DNA-protein complexes, and determined the apparent angular diffusion constant, which was similar to the value calculated in our previous study. We showed more real movement of the protein could be observed by lowering the immobilization density of the protein.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yuji C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| |
Collapse
|