1
|
Dziadek ŁJ, Sieradzan AK, Czaplewski C, Zalewski M, Banaś F, Toczek M, Nisterenko W, Grudinin S, Liwo A, Giełdoń A. Assessment of Four Theoretical Approaches to Predict Protein Flexibility in the Crystal Phase and Solution. J Chem Theory Comput 2024; 20:7667-7681. [PMID: 39171852 PMCID: PMC11391579 DOI: 10.1021/acs.jctc.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this paper, we evaluated the ability of four coarse-grained methods to predict protein flexible regions with potential biological importance, UNRES-flex, UNRES-DSSP-flex (based on the united residue model of polypeptide chains without and with secondary structure restraints, respectively), CABS-flex (based on the C-α, C-β, and side chain model), and nonlinear rigid block normal mode analysis (NOLB) with a set of 100 protein structures determined by NMR spectroscopy or X-ray crystallography, with all secondary structure types. End regions with high fluctuations were excluded from analysis. The Pearson and Spearman correlation coefficients were used to quantify the conformity between the calculated and experimental fluctuation profiles, the latter determined from NMR ensembles and X-ray B-factors, respectively. For X-ray structures (corresponding to proteins in a crowded environment), NOLB resulted in the best agreement between the predicted and experimental fluctuation profiles, while for NMR structures (corresponding to proteins in solution), the ranking of performance is CABS-flex > UNRES-DSSP-flex > UNRES-flex > NOLB; however, CABS-flex sometimes exaggerated the extent of small fluctuations, as opposed to UNRES-DSSP-flex.
Collapse
Affiliation(s)
- Ł J Dziadek
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - A K Sieradzan
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - C Czaplewski
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - M Zalewski
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - F Banaś
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - M Toczek
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - W Nisterenko
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - S Grudinin
- LJK, University Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
| | - A Liwo
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - A Giełdoń
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Hull JA, Lee C, Kim JK, Lim SW, Park J, Park S, Lee SJ, Park G, Eom I, Kim M, Hyun H, Combs JE, Andring JT, Lomelino C, Kim CU, McKenna R. XFEL structure of carbonic anhydrase II: a comparative study of XFEL, NMR, X-ray and neutron structures. Acta Crystallogr D Struct Biol 2024; 80:194-202. [PMID: 38411550 PMCID: PMC10910541 DOI: 10.1107/s2059798324000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO2 and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.
Collapse
Affiliation(s)
- Joshua A. Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Woo Lim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - HyoJung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jacob E. Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Bakker MJ, Mládek A, Semrád H, Zapletal V, Pavlíková Přecechtělová J. Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach. Phys Chem Chem Phys 2022; 24:27678-27692. [PMID: 36373847 DOI: 10.1039/d2cp01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work extends the multi-scale computational scheme for the quantum mechanics (QM) calculations of Nuclear Magnetic Resonance (NMR) chemical shifts (CSs) in proteins that lack a well-defined 3D structure. The scheme couples the sampling of an intrinsically disordered protein (IDP) by classical molecular dynamics (MD) with protein fragmentation using the adjustable density matrix assembler (ADMA) and density functional theory (DFT) calculations. In contrast to our early investigation on IDPs (Pavlíková Přecechtělová et al., J. Chem. Theory Comput., 2019, 15, 5642-5658) and the state-of-the art NMR calculations for structured proteins, a partial re-optimization was implemented on the raw MD geometries in vibrational normal mode coordinates to enhance the accuracy of the MD/ADMA/DFT computational scheme. In addition, machine-learning based cluster analysis was performed on the scheme to explore its potential in producing protein structure ensembles (CLUSTER ensembles) that yield accurate CSs at a reduced computational cost. The performance of the cluster-based calculations is validated against results obtained with conventional structural ensembles consisting of MD snapshots extracted from the MD trajectory at regular time intervals (REGULAR ensembles). CS calculations performed with the refined MD/ADMA/DFT framework employed the 6-311++G(d,p) basis set that outperformed IGLO-III calculations with the same density functional approximation (B3LYP) and both explicit and implicit solvation. The partial geometry optimization did not universally improve the agreement of computed CSs with the experiment but substantially decreased errors associated with the ensemble averaging. A CLUSTER ensemble with 50 structures yielded ensemble averages close to those obtained with a REGULAR ensemble consisting of 500 MD frames. The cluster based calculations thus required only a fraction of the computational time.
Collapse
Affiliation(s)
- Michael J Bakker
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| | - Arnošt Mládek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| | - Hugo Semrád
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic. .,Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | - Vojtěch Zapletal
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| | - Jana Pavlíková Přecechtělová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Güntert P. A B-factor for NOEs? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107189. [PMID: 35358856 DOI: 10.1016/j.jmr.2022.107189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Nuclear Overhauser effects (NOEs) are influenced by motion. Here, we derive exact, analytical results for a model of isotropic, harmonic fluctuations of atom positions that corresponds to the one underlying crystallographic B-factors. The model includes steric repulsion and yields closed-form expressions for the expected value of general invertible functions of the distance between two atoms, with the special case r-6 for NOEs. We discuss the implications for the definition of an NOE-based B-factor in solution NMR.
Collapse
Affiliation(s)
- Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
5
|
Carugo O. Uses and Abuses of the Atomic Displacement Parameters in Structural Biology. Methods Mol Biol 2022; 2449:281-298. [PMID: 35507268 DOI: 10.1007/978-1-0716-2095-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
B-factors determined with X-ray crystallographic analyses are commonly used to estimate the flexibility degree of atoms, residues, and molecular moieties in biological macromolecules. In this chapter, the most recent studies and applications of B-factors in protein engineering and structural biology are briefly summarized. Particular emphasis is given to the limitations in using B-factors, in order to prevent inappropriate applications. It is eventually predicted that future applications will involve anisotropically refined B-factors, deep learning, and data produced by cryo-EM.
Collapse
|
6
|
Leone M. Special Issue-The Conformational Universe of Proteins and Peptides: Tales of Order and Disorder. Molecules 2021; 26:3716. [PMID: 34207044 PMCID: PMC8234555 DOI: 10.3390/molecules26123716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Among biological macromolecules, proteins hold prominent roles in a vast array of physiological and pathological processes [...].
Collapse
Affiliation(s)
- Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|