1
|
Marčec J, Ristić A, Logar NZ. New Insights into ZIF-90 Synthesis. Molecules 2024; 29:3731. [PMID: 39202811 PMCID: PMC11357124 DOI: 10.3390/molecules29163731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake. Pure ZIF-90 was synthesized under ambient pressure at 60 °C for 90 min using the conventional solvothermal method in an acetone-water solution, while under microwave irradiation it was formed in only 5 min at 80 °C. Altering methanol, water and acetone in the reaction mixture significantly affected the structural and water adsorption properties of ZIF-90s, which were monitored via PXRD, TGA, nitrogen and water sorption, and SEM. The highly efficient, less toxic, low-cost and activation-free microwave synthesis resulted in the formation of ZIF-90 nanoparticles that exhibited the highest maximum water adsorption capacity (0.37 g/g) and the best hydrothermal stability between water adsorption at 30 °C and desorption at 100 °C at 12.5 mbar among all the products obtained.
Collapse
Affiliation(s)
- Jan Marčec
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (J.M.); (N.Z.L.)
- School of Science, University of Nova Gorica, Vipavska cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Alenka Ristić
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (J.M.); (N.Z.L.)
| | - Nataša Zabukovec Logar
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (J.M.); (N.Z.L.)
- School of Science, University of Nova Gorica, Vipavska cesta 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
2
|
Škrjanc A, Jankovič D, Meden A, Mazaj M, Grape ES, Gazvoda M, Zabukovec Logar N. Carbonyl-Supported Coordination in Imidazolates: A Platform for Designing Porous Nickel-Based ZIFs as Heterogeneous Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305258. [PMID: 37797179 DOI: 10.1002/smll.202305258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic framework that have attracted considerable attention as potential functional materials due to their high chemical stability and ease of synthesis. ZIFs are usually composed of zinc ions coordinated with imidazole linkers, with some other transition metals, such as Cu(II) and Co(II), also showing potential as ZIF-forming cations. Despite the importance of nickel in catalysis, no Ni-based ZIF with permanent porosity is yet reported. It is found that the presence and arrangement of the carbonyl functional groups on the imidazole linker play a crucial role in completing the preferred octahedral coordination of nickel, revealing a promising platform for the rational design of Ni-based ZIFs for a wide range of catalytic applications. Herein, the synthesis of the first Ni-based ZIFs is reported and their high potential as heterogeneous catalysts for Suzuki-Miyaura cross-coupling C─C bond forming reactions is demonstrated.
Collapse
Affiliation(s)
- Aljaž Škrjanc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1001, Slovenia
- School of Science, University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| | - Dominik Jankovič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, 1001, Slovenia
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, 1001, Slovenia
| | - Matjaž Mazaj
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1001, Slovenia
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 106 91, Sweden
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, 1001, Slovenia
| | - Nataša Zabukovec Logar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1001, Slovenia
- School of Science, University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| |
Collapse
|
3
|
Škrjanc A, Opresnik M, Gabrijelčič M, Šuligoj A, Mali G, Zabukovec Logar N. Impact of Dye Encapsulation in ZIF-8 on CO 2, Water, and Wet CO 2 Sorption. Molecules 2023; 28:7056. [PMID: 37894537 PMCID: PMC10609182 DOI: 10.3390/molecules28207056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The fast adsorption kinetics of zeolitic imidazolate frameworks (ZIFs) enable a wide range of sorption applications. The most commonly used framework, ZIF-8, is relatively non-polar. Increasing the polarity of ZIF-8 through the encapsulation of different polar species shows promise for enhancing the sorption performance for pure CO2. Recently, the outlook has re-focused on gas mixtures, mostly in the context of post-combustion CO2 capture from wet flue gasses. While water is known to sometimes have a synergistic effect on CO2 sorption, we still face the potential problem of preferential water vapor adsorption. Herein, we report the preparation of three ZIF-8/organic dye (OD) composites using Congo red, Xylenol orange, and Bromothymol blue, and their impact on the sorption properties for CO2, water, and a model wet CO2 system at 50% RH. The results show that the preparation of OD composites can be a promising way to optimize adsorbents for single gasses, but further work is needed to find superior ZIF@OD for the selective sorption of CO2 from wet gas mixtures.
Collapse
Affiliation(s)
- Aljaž Škrjanc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Postgraduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Mojca Opresnik
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
| | - Matej Gabrijelčič
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
| | - Andraž Šuligoj
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Faculty of Chemistry and Chemical Technology, University of Ljubjana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Postgraduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Nataša Zabukovec Logar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Postgraduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
4
|
Evaluation of ZIF-8 and ZIF-90 as Heat Storage Materials by Using Water, Methanol and Ethanol as Working Fluids. CRYSTALS 2021. [DOI: 10.3390/cryst11111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The increasing demand for heating/cooling is of grave concern due to the ever-increasing population. One method that addresses this issue and uses renewable energy is Thermochemical Energy Storage (TCES), which is based on the reversible chemical reactions and/or sorption processes of gases in solids or liquids. Zeolitic imidazolate frameworks (ZIFs), composed of transition metal ions (Zn, Co, etc.) and imidazolate linkers, have gained significant interest recently as porous adsorbents in low temperature sorption-based TES (sun/waste heat). In this study, we examined two different sodalite-type ZIF structures (ZIF-8 and ZIF-90) for their potential heat storage applications, based on the adsorption of water, methanol and ethanol as adsorbates. Both ZIF structures were analysed using PXRD, TGA, SEM and N2 physisorption while the % adsorbate uptake and desorption enthalpy was evaluated using TGA and DSC analysis, respectively. Among the studied adsorbent–adsorbate pairs, ZIF-90-water showed the highest desorption enthalpy, the fastest sorption kinetics and, therefore, the best potential for use in heat storage/reallocation applications. This was due to its significantly smaller particle size and higher specific surface area, and the presence of mesoporosity as well as polar groups in ZIF-90 when compared to ZIF-8.
Collapse
|