1
|
Ochoa R, Deibler K. PepFuNN: Novo Nordisk Open-Source Toolkit to Enable Peptide in Silico Analysis. J Pept Sci 2025; 31:e3666. [PMID: 39777768 PMCID: PMC11706630 DOI: 10.1002/psc.3666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
We present PepFuNN, a new open-source version of the PepFun package with functions to study the chemical space of peptide libraries and perform structure-activity relationship analyses. PepFuNN is a Python package comprising five modules to study peptides with natural amino acids and, in some cases, sequences with non-natural amino acids based on the availability of a public monomer dictionary. The modules allow calculating physicochemical properties, performing similarity analysis using different peptide representations, clustering peptides using molecular fingerprints or calculated descriptors, designing peptide libraries based on specific requirements, and a module dedicated to extracting matched pairs from experimental campaigns to guide the selection of the most relevant mutations in design new rounds. The code and tutorials are available at https://github.com/novonordisk-research/pepfunn.
Collapse
Affiliation(s)
| | - Kristine Deibler
- Novo Nordisk Research Center Seattle, Novo Nordisk A/SSeattleWashingtonUSA
| |
Collapse
|
2
|
Wang Z, Wu J, Zheng M, Geng C, Zhen B, Zhang W, Wu H, Xu Z, Xu G, Chen S, Li X. StaPep: An Open-Source Toolkit for Structure Prediction, Feature Extraction, and Rational Design of Hydrocarbon-Stapled Peptides. J Chem Inf Model 2024; 64:9361-9373. [PMID: 39503524 DOI: 10.1021/acs.jcim.4c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
All-hydrocarbon stapled peptides, with their covalent side-chain constraints, provide enhanced proteolytic stability and membrane permeability, making them superior to linear peptides. However, tools for extracting structural and physicochemical descriptors to predict the properties of hydrocarbon-stapled peptides are lacking. To address this, we present StaPep, a Python-based toolkit for generating 3D structures and calculating 21 features for hydrocarbon-stapled peptides. StaPep supports peptides containing two non-standard amino acids (norleucine and 2-aminoisobutyric acid) and six non-natural anchoring residues (S3, S5, S8, R3, R5, and R8), with customization options for other non-standard amino acids. We showcase StaPep's utility through three case studies. The first generates 3D structures of these peptides with a mean RMSD of 1.62 ± 0.86, offering essential structural insights for drug design and biological activity prediction. The second develops machine learning models based on calculated molecular features to differentiate between membrane-permeable and non-permeable stapled peptides, achieving an AUC of 0.93. The third constructs regression models to predict the antimicrobial activity of stapled peptides against Escherichia coli, with a Pearson correlation of 0.84. StaPep's pipeline spans data retrieval, structure generation, feature calculation, and machine learning modeling for hydrocarbon-stapled peptides. The source codes and data set are freely available on Github: https://github.com/dahuilangda/stapep_package.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou VicrobX Biotech Co., Ltd., Hangzhou 310018, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Mengjun Zheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chenchen Geng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Borui Zhen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou VicrobX Biotech Co., Ltd., Hangzhou 310018, China
| | - Hui Wu
- Huadong Medicine Co., Ltd., Hangzhou 310015, China
| | - Zhengyang Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Santos-Júnior CD, Torres MDT, Duan Y, Rodríguez Del Río Á, Schmidt TSB, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024; 187:3761-3778.e16. [PMID: 38843834 PMCID: PMC11666328 DOI: 10.1016/j.cell.2024.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Laboratory of Microbial Processes & Biodiversity - LMPB, Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; APC Microbiome & School of Medicine, University College Cork, Cork, Ireland
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
5
|
Seixas Feio JA, de Oliveira ECL, de Sales CDS, da Costa KS, e Lima AHL. Investigating molecular descriptors in cell-penetrating peptides prediction with deep learning: Employing N, O, and hydrophobicity according to the Eisenberg scale. PLoS One 2024; 19:e0305253. [PMID: 38870192 PMCID: PMC11175476 DOI: 10.1371/journal.pone.0305253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Cell-penetrating peptides comprise a group of molecules that can naturally cross the lipid bilayer membrane that protects cells, sharing physicochemical and structural properties, and having several pharmaceutical applications, particularly in drug delivery. Investigations of molecular descriptors have provided not only an improvement in the performance of classifiers but also less computational complexity and an enhanced understanding of membrane permeability. Furthermore, the employment of new technologies, such as the construction of deep learning models using overfitting treatment, promotes advantages in tackling this problem. In this study, the descriptors nitrogen, oxygen, and hydrophobicity on the Eisenberg scale were investigated, using the proposed ConvBoost-CPP composed of an improved convolutional neural network with overfitting treatment and an XGBoost model with adjusted hyperparameters. The results revealed favorable to the use of ConvBoost-CPP, having as input nitrogen, oxygen, and hydrophobicity together with ten other descriptors previously investigated in this research line, showing an increase in accuracy from 88% to 91.2% in cross-validation and 82.6% to 91.3% in independent test.
Collapse
Affiliation(s)
- Juliana Auzier Seixas Feio
- Laboratório de Inteligência Computacional e Pesquisa Operacional, Campus Belém, Instituto de Tecnologia, Universidade Federal do Pará, Pará, Brazil
| | - Ewerton Cristhian Lima de Oliveira
- Laboratório de Inteligência Computacional e Pesquisa Operacional, Campus Belém, Instituto de Tecnologia, Universidade Federal do Pará, Pará, Brazil
- Instituto Tecnológico Vale, Belém, Pará, Brazil
| | - Claudomiro de Souza de Sales
- Laboratório de Inteligência Computacional e Pesquisa Operacional, Campus Belém, Instituto de Tecnologia, Universidade Federal do Pará, Pará, Brazil
| | - Kauê Santana da Costa
- Laboratório de Simulação Computacional, Campus Marechal Rondom, Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Anderson Henrique Lima e Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
6
|
Ochoa R, Fox T. Assessing the fast prediction of peptide conformers and the impact of non-natural modifications. J Mol Graph Model 2023; 125:108608. [PMID: 37659134 DOI: 10.1016/j.jmgm.2023.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
We present an assessment of different approaches to predict peptide structures using modeling tools. Several small molecule, protein, and peptide-focused methodologies were used for the fast prediction of conformers for peptides shorter than 30 amino acids. We assessed the effect of including restraints based on annotated or predicted secondary structure motifs. A number of peptides in bound conformations and in solution were collected to compare the tools. In addition, we studied the impact of changing single amino acids to non-natural residues using molecular dynamics simulations. Deep learning methods such as AlphaFold2, or the combination of physics-based approaches with secondary structure information, produce the most accurate results for natural sequences. In the case of peptides with non-natural modifications, modeling the peptide containing natural amino acids first and then modifying and simulating the peptide using benchmarked force fields is a recommended pipeline. The results can guide the modeling of oligopeptides for drug discovery projects.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany.
| | - Thomas Fox
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| |
Collapse
|
7
|
Ochoa R, Brown JB, Fox T. pyPept: a python library to generate atomistic 2D and 3D representations of peptides. J Cheminform 2023; 15:79. [PMID: 37700347 PMCID: PMC10498622 DOI: 10.1186/s13321-023-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
We present pyPept, a set of executables and underlying python-language classes to easily create, manipulate, and analyze peptide molecules using the FASTA, HELM, or recently-developed BILN notations. The framework enables the analysis of both pure proteinogenic peptides as well as those with non-natural amino acids, including support to assemble a customizable monomer library, without requiring programming. From line notations, a peptide is transformed into a molecular graph for 2D depiction tasks, the calculation of physicochemical properties, and other systematic analyses or processing pipelines. The package includes a module to rapidly generate approximate peptide conformers by incorporating secondary structure restraints either given by the user or predicted via pyPept, and a wrapper tool is also provided to automate the generation and output of 2D and 3D representations of a peptide directly from the line notation. HELM and BILN notations that include circular, branched, or stapled peptides are fully supported, eliminating errors in structure creation that are prone during manual drawing and connecting. The framework and common workflows followed in pyPept are described together with illustrative examples. pyPept has been released at: https://github.com/Boehringer-Ingelheim/pyPept .
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach/Riss, Germany
| | - J B Brown
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach/Riss, Germany
| | - Thomas Fox
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach/Riss, Germany.
| |
Collapse
|
8
|
Santos-Júnior CD, Der Torossian Torres M, Duan Y, del Río ÁR, Schmidt TS, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Computational exploration of the global microbiome for antibiotic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555663. [PMID: 37693522 PMCID: PMC10491242 DOI: 10.1101/2023.08.31.555663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Álvaro Rodríguez del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Thomas S.B. Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- International Human Phenome Institute, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Jukič M, Kralj S, Kolarič A, Bren U. Design of Tetra-Peptide Ligands of Antibody Fc Regions Using In Silico Combinatorial Library Screening. Pharmaceuticals (Basel) 2023; 16:1170. [PMID: 37631085 PMCID: PMC10459493 DOI: 10.3390/ph16081170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Peptides, or short chains of amino-acid residues, are becoming increasingly important as active ingredients of drugs and as crucial probes and/or tools in medical, biotechnological, and pharmaceutical research. Situated at the interface between small molecules and larger macromolecular systems, they pose a difficult challenge for computational methods. We report an in silico peptide library generation and prioritization workflow using CmDock for identifying tetrapeptide ligands that bind to Fc regions of antibodies that is analogous to known in vitro recombinant peptide libraries' display and expression systems. The results of our in silico study are in accordance with existing scientific literature on in vitro peptides that bind to antibody Fc regions. In addition, we postulate an evolving in silico library design workflow that will help circumvent the combinatorial problem of in vitro comprehensive peptide libraries by focusing on peptide subunits that exhibit favorable interaction profiles in initial in silico peptide generation and testing.
Collapse
Affiliation(s)
- Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Sebastjan Kralj
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Anja Kolarič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
10
|
Fox T, Bieler M, Haebel P, Ochoa R, Peters S, Weber A. BILN: A Human-Readable Line Notation for Complex Peptides. J Chem Inf Model 2022; 62:3942-3947. [PMID: 35984937 DOI: 10.1021/acs.jcim.2c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an easy, human-readable line notation to describe even complex peptides.
Collapse
Affiliation(s)
- Thomas Fox
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| | - Michael Bieler
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| | - Peter Haebel
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| | - Rodrigo Ochoa
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| | - Stefan Peters
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| | - Alexander Weber
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| |
Collapse
|
11
|
PDAUG: a Galaxy based toolset for peptide library analysis, visualization, and machine learning modeling. BMC Bioinformatics 2022; 23:197. [PMID: 35643441 PMCID: PMC9148462 DOI: 10.1186/s12859-022-04727-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Computational methods based on initial screening and prediction of peptides for desired functions have proven to be effective alternatives to lengthy and expensive biochemical experimental methods traditionally utilized in peptide research, thus saving time and effort. However, for many researchers, the lack of expertise in utilizing programming libraries, access to computational resources, and flexible pipelines are big hurdles to adopting these advanced methods.
Results To address the above mentioned barriers, we have implemented the peptide design and analysis under Galaxy (PDAUG) package, a Galaxy-based Python powered collection of tools, workflows, and datasets for rapid in-silico peptide library analysis. In contrast to existing methods like standard programming libraries or rigid single-function web-based tools, PDAUG offers an integrated GUI-based toolset, providing flexibility to build and distribute reproducible pipelines and workflows without programming expertise. Finally, we demonstrate the usability of PDAUG in predicting anticancer properties of peptides using four different feature sets and assess the suitability of various ML algorithms. Conclusion PDAUG offers tools for peptide library generation, data visualization, built-in and public database peptide sequence retrieval, peptide feature calculation, and machine learning (ML) modeling. Additionally, this toolset facilitates researchers to combine PDAUG with hundreds of compatible existing Galaxy tools for limitless analytic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04727-6.
Collapse
|
12
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|