1
|
Lü J, Jiang C, Drabick JJ, Joshi M, Perimbeti S. Angelica gigas Nakai (Korean Dang-gui) Root Alcoholic Extracts in Health Promotion and Disease Therapy - active Phytochemicals and In Vivo Molecular Targets. Pharm Res 2025; 42:25-47. [PMID: 39779619 PMCID: PMC11785709 DOI: 10.1007/s11095-024-03809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extracts have been marketed as dietary supplements in the United States for memory health and pain management. We have recently reviewed the pharmacokinetics (PK) and first-pass hepatic metabolism of ingested AGN supplements in humans for the signature pyranocoumarins decursin (D, Cmax 1x), decursinol angelate (DA, Cmax ~ 10x) and their common botanical precursor and hepatic metabolite decursinol (DOH, Cmax ~ 1000x). Here we update in vivo medicinal activities of AGN and/or its pyranocoumarins and furanocoumarin nodakenin in cancer, pain, memory loss, cerebral ischemia reperfusion stroke, metabolic syndrome and vascular endothelial dysfunctions, anxiety, sleep disorder, epilepsy, inflammatory bowel disease, osteoporosis and osteoarthritis. Given their polypharmacology nature, the pertinent mechanisms of action are likely misrepresented by many cell culture studies that did not consider the drug metabolism knowledge. We report here Rho-associated protein kinases (ROCK1/2) as novel targets for DA and DOH. Combining with published inhibitory activity of DOH on acetylcholinesterase, agonist activity of DOH and antagonist/degrader activity of DA/D on androgen and estrogen receptors, D/DA promoting activity for glutamic acid decarboxylase (GAD)- gamma-aminobutyric acid (GABA) inhibitory axis and inhibition of glutamate dehydrogenase (GDH), monoamine oxidase-A (MAO-A) and transient receptor potential vanilloid 1 (TRPV1), we postulate their contributions to neuro-cognitive, metabolic, oncologic, vascular and other beneficial bioactivities of AGN extracts. A clinical trial is being planned for an AGN extract to manage side effects of androgen deprivation therapy in prostate cancer patients.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Cannabis and Natural Product Pharmaceutics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Cheng Jiang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Center for Cannabis and Natural Product Pharmaceutics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph J Drabick
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Monika Joshi
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stuthi Perimbeti
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
2
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kwon HJ, Jung HY, Choi SY, Hwang IK, Kim DW, Shin MJ. Protective effect of Tat fused HPCA protein on neuronal cell death caused by ischemic injury. Heliyon 2024; 10:e23488. [PMID: 38192804 PMCID: PMC10772100 DOI: 10.1016/j.heliyon.2023.e23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Background Bain ischemia is a disease that occurs for various reasons, induces reactive oxygen species (ROS), and causes fatal damage to the nervous system. Protective effect of HPCA on ischemic injury has not been extensively studied despite its significance in regulating calcium homeostasis and promoting neuronal survival in CA1 region of the brain. Objective We investigate the role of HPCA in ischemic injury using a cell-permeable Tat peptide fused HPCA protein (Tat-HPCA). Methods Western blot analysis determined the penetration of Tat-HPCA into HT-22 cells and apoptotic signaling pathways. 5-CFDA, AM, DCF-DA, and TUNEL staining confirmed intracellular ROS production and DNA damage. The intracellular Ca2+ was measured in primary cultured neurons treated with H2O2. Protective effects were examined using immunohistochemistry and cognitive function tests by passive avoidance test and 8-arm radial maze test. Results Tat-HPCA effectively penetrated into HT-22 cells and inhibited H2O2-induced apoptosis, oxidative stress, and DNA fragmentation. It also effectively inhibited phosphorylation of JNK and regulated the activation of Caspase, Bax, Bcl-2, and PARP, leading to inhibition of apoptosis. Moreover, Ca2+ concentration decreased in cells treated with Tat-HPCA in primary cultured neurons. In an animal model of ischemia, Tat-HPCA effectively penetrated the hippocampus, inhibited cell death, and regulated activities of astrocytes and microglia. Additionally, Cognitive function tests show that Tat-HPCA improves neurobehavioral outcomes after cerebral ischemic injury. Conclusion These results suggest that Tat-HPCA might have potential as a therapeutic agent for treating oxidative stress-related diseases induced by ischemic injury, including ischemia.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
4
|
Lee GH, Lee HY, Lim YJ, Kim JH, Jung SJ, Jung ES, Chae SW, Lee J, Lim J, Rashid MMU, Min KH, Chae HJ. Angelica gigas extract inhibits acetylation of eNOS via IRE1α sulfonation/RIDD-SIRT1-mediated posttranslational modification in vascular dysfunction. Aging (Albany NY) 2023; 15:13608-13627. [PMID: 38095615 PMCID: PMC10756119 DOI: 10.18632/aging.205343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hwa-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Young-Je Lim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji-Hyun Kim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Su-Jin Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Eun-Soo Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Juwon Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Junghyun Lim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mohammad Mamun Ur Rashid
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyung Hyun Min
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Han-Jung Chae
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
5
|
Bowie AR, Gibson-Corley KN, Yu ENZ. Pharmacokinetics of Extended-release Buprenorphine in Mongolian Gerbils ( Meriones unguiculatus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:538-544. [PMID: 37813575 PMCID: PMC10772909 DOI: 10.30802/aalas-jaalas-23-000048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023]
Abstract
Both the Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act and Regulations require animals in research to receive adequate analgesia unless an exception can be scientifically justified and IACUC approved. Extended- release buprenorphine (BUP-XR) is a pharmaceutical-grade formulation that is FDA-indexed for use in mice and rats. However, this new formulation has not been evaluated in adult Mongolian gerbils (Meriones unguiculatus). Our goal was to determine whether the extrapolated dose (1 mg/kg SC) would achieve plasma buprenorphine concentrations above the murine therapeutic threshold (> 1.0 ng/mL) in male and female gerbils. We hypothesized that BUP-XR administered at 1 mg/kg would achieve the murine therapeutic threshold in both male and female gerbils until at least 48 h after injection. Gerbils received one injection of BUP-XR (1 mg/kg SC) and underwent 4 serial blood collections (0.5, 1, 2, and 4, or 0.5, 24, 48, and 72 h after injection). The average plasma buprenorphine concentrations were above 1 ng/mL within 30 min of administration for both males and females. Plasma buprenorphine concentrations remained above 1.0 ng/mL for 48 h after administration. In males, plasma buprenorphine concentrations were significantly higher at 1 h after injection as compared with females; no other significant differences were observed between sexes. Mild to moderate injection-site granulomas were observed in five of nine gerbils, presumably due to the lipid matrix of the BUP-XR formulation. Our findings demonstrate that a single BUP-XR dose (1 mg/kg SC) achieves plasma buprenorphine levels that remain above the murine therapeutic threshold of 1.0 ng/mL for up to 48 h in both sexes.
Collapse
Affiliation(s)
- Aleaya R Bowie
- Division of Animal Care, Deptartment of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katherine N Gibson-Corley
- Division of Animal Care, Deptartment of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Erin NZ Yu
- Division of Animal Care, Deptartment of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Tran NKS, Trinh TA, Pyo J, Kim CG, Park JG, Kang KS. Neuroprotective Potential of Pyranocoumarins from Angelica gigas Nakai on Glutamate-Induced Hippocampal Cell Death. Antioxidants (Basel) 2023; 12:1651. [PMID: 37627646 PMCID: PMC10451762 DOI: 10.3390/antiox12081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic neurodegenerative diseases are typically associated with oxidative stress conditions leading to neuronal cell death. We aimed to investigate the neuroprotective effect of three pyranocoumarins (decursin, decursinol angelate, and decursinol) targeting oxidative stress factors. Decursin (also known as dehydro-8-prenylnaringenin) is a prenylated coumarin compound consisting of a coumarin ring system with a prenyl group attached to one of the carbons in the ring. As a secondary metabolite of plants, pyranocoumarin decursin from Angelica gigas Nakai presented protective effects against glutamate-induced oxidative stress in HT22, a murine hippocampal neuronal cell line. Decursinol (DOH) is a metabolite of decursin, sharing same coumarin ring system but a slightly different chemical structure with the prenyl group replaced by a hydroxyl group (-OH). In our findings, DOH was ineffective while decursin was, suggesting that this prenyl structure may be important for compound absorption and neuroprotection. By diminishing the accumulation of intracellular reactive oxygen species as well as stimulating the expression of HO-1, decursin triggers the self-protection system in neuronal cells. Additionally, decursin also revealed an anti-apoptotic effect by inhibiting chromatin condensation and reducing the forming of annexin-V-positive cells.
Collapse
Affiliation(s)
| | - Tuy An Trinh
- Saigon Pharmaceutical Science and Technology Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 70000, Vietnam;
| | - Jaesung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea;
| | - Chang Geon Kim
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea;
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
7
|
Park JH, Lee TK, Kim DW, Ahn JH, Lee CH, Lim SS, Kim YH, Cho JH, Kang IJ, Won MH. Aucubin Exerts Neuroprotection against Forebrain Ischemia and Reperfusion Injury in Gerbils through Antioxidative and Neurotrophic Effects. Antioxidants (Basel) 2023; 12:antiox12051082. [PMID: 37237948 DOI: 10.3390/antiox12051082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Aucubin is an iridoid glycoside that displays various pharmacological actions including antioxidant activity. However, there are few reports available on the neuroprotective effects of aucubin against ischemic brain injury. Thus, the aim of this study was to investigate whether aucubin protected against damage to hippocampal function induced by forebrain ischemia-reperfusion injury (fIRI) in gerbils, and to examine whether aucubin produced neuroprotection in the hippocampus against fIRI and to explore its mechanisms by histopathology, immunohistochemistry, and Western analysis. Gerbils were given intraperitoneal injections of aucubin at doses of 1, 5, and 10 mg/kg, respectively, once a day for seven days before fIRI. As assessed by the passive avoidance test, short-term memory function following fIRI significantly declined, whereas the decline in short-term memory function due to fIRI was ameliorated by pretreatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin. Most of the pyramidal cells (principal cells) of the hippocampus died in the Cornu Ammonis 1 (CA1) area four days after fIRI. Treatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin protected the pyramidal cells from IRI. The treatment with 10 mg/kg of aucubin significantly reduced IRI-induced superoxide anion production, oxidative DNA damage, and lipid peroxidation in the CA1 pyramidal cells. In addition, the aucubin treatment significantly increased the expressions of superoxide dismutases (SOD1 and SOD2) in the pyramidal cells before and after fIRI. Furthermore, the aucubin treatment significantly enhanced the protein expression levels of neurotrophic factors, such as brain-derived neurotrophic factor and insulin-like growth factor-I, in the hippocampal CA1 area before and after IRI. Collectively, in this experiment, pretreatment with aucubin protected CA1 pyramidal cells from forebrain IRI by attenuating oxidative stress and increasing neurotrophic factors. Thus, pretreatment with aucubin can be a promising candidate for preventing brain IRI.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea
| |
Collapse
|
8
|
Decursin alleviates LPS-induced lung epithelial cell injury by inhibiting NF-κB pathway activation. Allergol Immunopathol (Madr) 2023; 51:37-43. [PMID: 36617820 DOI: 10.15586/aei.v51i1.689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To reveal the possible effects of decursin on viability, oxidative stress, and inflammatory response in lipopolysaccharide (LPS)-treated human bronchial epithelial cells-2B (BEAS-2B) and human pulmonary artery endothelial cells (HPAEC) cells, and revealed the potential mechanisms. METHODS LPS was used to induce acute lung injury (ALI) in normal human lung epithelial cells, including BEAS-2B and HPAEC cells. Cell viability and apoptosis in response to LPS and decursin in BEAS-2B and HPAEC cells were, respectively, evaluated by MTT colorimetric and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The oxidative stress and inflammatory response in LPS-treated BEAS-2B and HPAEC cells were detected by enzyme-linked-immunosorbent serologic assay. In addition, the role of decursin in nuclear -factor-kappa B (NF-κB) activation was analyzed by immunoblot and immunofluorescence assays. RESULTS Our data revealed that decursin could alleviate the viability of LPS-induced BEAS-2B and HPAEC cells. Decursin could also reduce LPS-induced oxidative stress in BEAS-2B and HPAEC cells. In addition, it could reduce LPS-induced inflammation in BEAS-2B and HPAEC cells. Mechanically, decursin suppressed the activation of NF-κB pathway. CONCLUSION Decursin suppressed NF-κB pathway, and therefore alleviated ALI.
Collapse
|
9
|
Kang M, Park S, Chung Y, Lim JO, Kang JS, Park JH. Hematopoietic Effects of Angelica gigas Nakai Extract on Cyclophosphamide-Induced Myelosuppression. PLANTS (BASEL, SWITZERLAND) 2022; 11:3476. [PMID: 36559587 PMCID: PMC9781469 DOI: 10.3390/plants11243476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Myelosuppression is a major adverse effect of chemotherapy. With the increasing number of cancer patients worldwide, there is a growing interest in therapeutic approaches that reduce the adverse effects of chemotherapy. Angelica gigas Nakai (AGN) roots have been widely used in oriental medicine to treat blood-related diseases, including cancer. However, the effects of AGN on myelosuppression have not been studied. Here, we investigated the effects of AGN ethanol extract (AGNEX) on cyclophosphamide-induced myelosuppression. AGNEX treatment significantly decreased white blood cell levels while increasing red blood cell and platelet levels in the peripheral blood. It inhibited thymus and spleen atrophy. It also enhanced serum levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. qRT-PCR results showed that AGNEX decreased the expression of IL-1b and stem cell factor (SCF) in the bone marrow (BM) while increasing the mRNA expression of IL-3 and IL-6 in the spleen. Although AGNEX did not significantly decrease apoptosis and cell cycle arrest in the BM and splenocytes, AGNEX plays a positive role in cyclophosphamide-induced myelosuppression. AGNEX administration increased BM cells in the femur while decreasing apoptotic BM cells. These findings suggest that AGNEX could be used to treat myelosuppression and as a combination therapy in cancer patients.
Collapse
Affiliation(s)
- Mincheol Kang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Republic of Korea
| | - Seojin Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Republic of Korea
| | - Yuseong Chung
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Je-Oh Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Republic of Korea
| | - Jae Seon Kang
- Department of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Republic of Korea
| |
Collapse
|
10
|
Lü J, Jiang C, Schell TD, Joshi M, Raman JD, Xing C. Angelica gigas: Signature Compounds, In Vivo Anticancer, Analgesic, Neuroprotective and Other Activities, and the Clinical Translation Challenges. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1475-1527. [PMID: 35876033 DOI: 10.1142/s0192415x2250063x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extract dietary supplements are marketed in the United States for memory health and pain management. We comprehensively reviewed the anticancer, analgesic, pro-memory and other bio-activities of AGN extract and its signature phytochemicals decursin, decursinol angelate, and decursinol a decade ago in 2012 and updated their anticancer activities in 2015. In the last decade, significant progress has been made for understanding the pharmacokinetics (PK) and metabolism of these compounds in animal models and single dose human PK studies have been published by us and others. In addition to increased knowledge of the known bioactivities, new bioactivities with potential novel health benefits have been reported in animal models of cerebral ischemia/stroke, anxiety, sleep disorder, epilepsy, inflammatory bowel disease, sepsis, metabolic disorders, osteoporosis, osteoarthritis, and even male infertility. Herein, we will update PK and metabolism of pyranocoumarins, review in vivo bioactivities from animal models and human studies, and critically appraise the relevant active compounds, the cellular and molecular pharmacodynamic targets, and pertinent mechanisms of action. Knowledge gaps include whether human pyranocoumarin PK metrics are AGN dose dependent and subjected to metabolic ceiling, or metabolic adaptation after repeated use. Critical clinical translation challenges include sourcing of AGN extracts, product consistency and quality control, and AGN dose optimization for different health conditions and disease indications. Future research directions are articulated to fill knowledge gaps and address these challenges.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Cheng Jiang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Todd D Schell
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Monika Joshi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jay D Raman
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Lee CH, Lee TK, Kim DW, Lim SS, Kang IJ, Ahn JH, Park JH, Lee JC, Kim CH, Park Y, Won MH, Choi SY. Relationship between Neuronal Damage/Death and Astrogliosis in the Cerebral Motor Cortex of Gerbil Models of Mild and Severe Ischemia and Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23095096. [PMID: 35563487 PMCID: PMC9100252 DOI: 10.3390/ijms23095096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Choong-Hyo Kim
- Department of Neurosurgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Yoonsoo Park
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Correspondence: (M.-H.W.); (S.Y.C.)
| |
Collapse
|
12
|
Shin MC, Lee TK, Lee JC, Kim HI, Park CW, Cho JH, Kim DW, Ahn JH, Won MH, Lee CH. Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:47-57. [PMID: 34965995 PMCID: PMC8723979 DOI: 10.4196/kjpp.2022.26.1.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022]
Abstract
Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.
Collapse
Affiliation(s)
- Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jae-Chul Lee
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Hyung Il Kim
- Department of Emergency Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24289, Korea
- Department of Emergency Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Chan Woo Park
- Department of Emergency Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
13
|
Lee TK, Hong J, Lee JW, Kim SS, Sim H, Lee JC, Kim DW, Lim SS, Kang IJ, Won MH. Ischemia-Induced Cognitive Impairment Is Improved via Remyelination and Restoration of Synaptic Density in the Hippocampus after Treatment with COG-Up ® in a Gerbil Model of Ischemic Stroke. Vet Sci 2021; 8:vetsci8120321. [PMID: 34941848 PMCID: PMC8705370 DOI: 10.3390/vetsci8120321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebrovascular disease such as ischemic stroke develops cognitive impairment due to brain tissue damage including neural loss, demyelination and decrease in synaptic density. In the present study, we developed transient ischemia in the forebrain of the gerbil and found cognitive impairment using the Barnes maze test and passive avoidance test for spatial memory and learning memory, respectively. In addition, neuronal loss/death was detected in the Cornu Ammonis 1 (CA1) region of the gerbil hippocampus after the ischemia by cresyl violet histochemistry, immunohistochemistry for neuronal nuclei and histofluorescence with Fluoro-Jade B. Furthermore, in the CA1 region following ischemia, myelin and vesicular synaptic density were significantly decreased using immunohistochemistry for myelin basic protein and vesicular glutamate transporter 1. In the gerbils, treatment with COG-up® (a combined extract of Erigeron annuus (L.) Pers. and Brassica oleracea Var.), which was rich in scutellarin and sinapic acid, after the ischemia, significantly improved ischemia-induced decline in memory function when compared with that shown in gerbils treated with vehicle after the ischemia. In the CA1 region of these gerbils, COG-up® treatment significantly promoted the remyelination visualized using immunohistochemistry myelin basic protein, increased oligodendrocytes visualized using a receptor-interacting protein, and restored the density of glutamatergic synapses visualized using double immunofluorescence for vesicular glutamate transporter 1 and microtubule-associated protein, although COG-up® treatment did not protect pyramidal cells (principal neurons) located in the CA1 region form the ischemic insult. Considering the current findings, a gerbil model of ischemic stroke apparently showed cognitive impairment accompanied by ischemic injury in the hippocampus; also, COG-up® can be employed for improving cognitive decline following ischemia-reperfusion injury in brains.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.)
| | - Junkee Hong
- Department of Global Innovative Drug, Chung-Ang University, Seoul 06974, Korea;
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang 16006, Korea; (J.-W.L.); (S.-S.K.)
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang 16006, Korea; (J.-W.L.); (S.-S.K.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, Korea;
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.)
- Correspondence: (I.J.K.); (M.-H.W.); Tel.: +82-33-248-2135 (I.J.K.); +82-33-250-8891 (M.-H.W.); Fax: +82-33-255-4787 (I.J.K.); +82-33-256-1614 (M.-H.W.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (H.S.); (J.-C.L.)
- Correspondence: (I.J.K.); (M.-H.W.); Tel.: +82-33-248-2135 (I.J.K.); +82-33-250-8891 (M.-H.W.); Fax: +82-33-255-4787 (I.J.K.); +82-33-256-1614 (M.-H.W.)
| |
Collapse
|
14
|
Lee TK, Lee JC, Kim JD, Kim DW, Ahn JH, Park JH, Kim HI, Cho JH, Choi SY, Won MH, Kang IIJ. Populus tomentiglandulosa Extract Is Rich in Polyphenols and Protects Neurons, Astrocytes, and the Blood-Brain Barrier in Gerbil Striatum Following Ischemia-Reperfusion Injury. Molecules 2021; 26:5430. [PMID: 34576901 PMCID: PMC8471727 DOI: 10.3390/molecules26185430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Gangwon, Korea; (T.-K.L.); (S.-Y.C.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea; (J.-C.L.); (J.-H.A.)
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Dae-Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung–Wonju National University, Gangneung 25457, Gangwon, Korea;
| | - Ji-Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea; (J.-C.L.); (J.-H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Gyeongsangnam, Korea
| | - Joon-Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, North Gyeongsang, Korea;
| | - Hyung-Il Kim
- Department of Emergency Medicine, Dankook University Hospital, College of Medicine, Dankook University, Cheonan 31116, Chungnam, Korea;
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Gangwon, Korea;
| | - Jun-Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Gangwon, Korea;
| | - Soo-Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Gangwon, Korea; (T.-K.L.); (S.-Y.C.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea; (J.-C.L.); (J.-H.A.)
| | - II-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Gangwon, Korea
| |
Collapse
|