1
|
Di Martino S, De Rosa M. The Benzoxazole Heterocycle: A Comprehensive Review of the Most Recent Medicinal Chemistry Developments of Antiproliferative, Brain-Penetrant, and Anti-inflammatory Agents. Top Curr Chem (Cham) 2024; 382:33. [PMID: 39432195 DOI: 10.1007/s41061-024-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
The benzoxazole is one of the most widely exploited heterocycles in drug discovery. Natural occurring and synthetic benzoxazoles show a broad range of biological activities. Many benzoxazoles are available for treating several diseases, and, to date, a few are in clinical trials. Moreover, an ever-increasing number of benzoxazole derivatives are under investigation in the early drug discovery phase and as potential hit or lead compounds. This perspective is an attempt to thoroughly review the rational design, the structure-activity relationship, and the biological activity of the most notable benzoxazoles developed during the past 5 years (period 2019-to date) in cancers, neurological disorders, and inflammation. We also briefly overviewed each target and its role in the disease. The huge amount of work examined suggests the great potential of the scaffold and the high interest of the scientific community in novel biologically active compounds containing the benzoxazole core.
Collapse
Affiliation(s)
- Simona Di Martino
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy
| | - Maria De Rosa
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy.
| |
Collapse
|
2
|
Thumma V, Mallikanti V, Matta R, Dharavath R, Jalapathi P. Design, synthesis, and cytotoxicity of ibuprofen-appended benzoxazole analogues against human breast adenocarcinoma. RSC Med Chem 2024; 15:1283-1294. [PMID: 38665840 PMCID: PMC11042172 DOI: 10.1039/d3md00479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/29/2023] [Indexed: 04/28/2024] Open
Abstract
A library of novel ibuprofen-appended benzoxazole analogues (7a-l) was synthesized via a series of nitration, reduction, and condensation-cyclization reactions and screened for their in vitro anticancer activity against human breast cancer MCF-7 and MDA-MB-231 cell lines using doxorubicin as a standard reference. Compounds 7h and 7j displayed outstanding activity against the MCF-7 cell line with an IC50 value of 8.92 ± 0.91 μM and 9.14 ± 8.22 μM, respectively, compared to the doxorubicin IC50 value of 9.29 ± 1.02 μM. Compound 7h also exhibited outstanding activity against the MDA-MB-231 cell line with an IC50 value of 7.54 ± 0.95 μM compared to the doxorubicin IC50 value of 7.68 ± 5.36 μM. Compounds 7h, 7i, 7j, and 7g showed identical morphological changes to those showed by doxorubicin. The molecular docking study against ERα unveiled their best docking scores and binding interactions in agreement to experimental results. Pharmacokinetics prediction envisaged their drug-like properties suitable for therapeutic applications.
Collapse
Affiliation(s)
- Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College Hyderabad 500059 Telangana India
| | | | - Raghavender Matta
- Department of Chemistry, Shyam Lal College, University of Delhi Delhi-110032 India
| | - Ravinder Dharavath
- Department of Chemistry, SRT Campus, Hemwati Nandan Bahuguna Garhwal University Tehri 249199 Uttarakhand India
| | | |
Collapse
|
3
|
Zhang C, Liu Y, Zhou Q, Fan H, Liu X, Hu J. Recent research advances in ATX inhibitors: An overview of primary literature. Bioorg Med Chem 2023; 90:117374. [PMID: 37354726 DOI: 10.1016/j.bmc.2023.117374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.
Collapse
Affiliation(s)
- Cheng Zhang
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Yue Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Qinjiang Zhou
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Hongze Fan
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Xiaoxiao Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
4
|
Cholinesterases Inhibition, Anticancer and Antioxidant Activity of Novel Benzoxazole and Naphthoxazole Analogs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238511. [PMID: 36500605 PMCID: PMC9738531 DOI: 10.3390/molecules27238511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Benzoxazole and naphthoxazole fused systems are found in many biologically active molecules. Novel benzoxazole and naphthoxazole analogs functionalized by the 2,4-dihydroxyphenyl moiety were designed, obtained and evaluated as a broad spectrum of biological potency compounds. Sulfinylbis[(2,4-dihydroxyphenyl)methanethione] or its analogs and 2-aminophenols or 1-amino-2-naphthol were used as starting reagents. 4-(Naphtho[1,2-d][1,3]oxazol-2-yl)benzene-1,3-diol was identified as the most promising compound of the nanomolar activity against AChE (IC50 = 58 nM) of the mixed-type inhibition and of the moderate activity against BChE (IC50 = 981 nM). The higher antiproliferative potency against a panel of human cancer cell lines for naphtho[1,2-d][1,3]oxazoles than for benzoxazoles was found. The activity of the analog with chlorine atom was in the range of 2.18-2.89 µM (IC50) against all studied cells and it is similar to that of cisplatin studied comparatively. Moreover, this compound was not toxic at this concentration to human normal breast cells and keratinocytes. For some compounds it also has proved antioxidant properties at the level of IC50 = 0.214 µM, for the most active compound. The lipophilicity of all compounds, expressed as log p values, is within the range recommended for potential drugs. The biological activity profile of the considered analogs and their lipophilic level justify the search for agents used in AD or in anticancer therapy in this group of compounds.
Collapse
|
5
|
Sun AL, Wang CC, Zhou H, Lang YF, Fu SY, Liu RM, Lei K. Design, Synthesis, and Evaluation of Isoindoline Derivatives as New Antidepressant
Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220301141149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Isoindoline derivatives exhibit a wide range of biological activities and have
attracted considerable attention. However, few studies have been conducted on their antidepressant activity.
Objective:
Here, we designed and synthesized a series of isoindoline derivatives and studied their antidepressant
activities.
Method:
Forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant
activity of the target compounds. The most active compound was used to evaluate the exploratory
activity of the animals by the open-field test. 5-HT concentration was estimated to evaluate if the compound
has an effect on the mice brain by using ELISA. The biological activities of the compounds were
verified by molecular docking studies. The pharmacokinetic properties of the target compounds were
predicted by Discovery Studio (DS) 2020.
Results:
The results of the pharmacological experiments showed that most isoindoline derivatives exhibited
significant antidepressant activity. Among these compounds, compound 4j showed the highest antidepressant
activity. The results of the measurement of 5-HT levels in the brains of mice indicate that the
antidepressant activity of isoindoline derivatives may be mediated by elevated 5-HT levels. Compound 4j
was used in molecular docking experiments to simulate the possible interaction of these compounds with
the 5-HT1A receptor. The results demonstrated that compound 4j had a significant interaction with amino
acids around the active site of the 5-HT1A receptor in the homology model.
Conclusion:
Isoindoline derivatives synthesized in this study have a significant antidepressant activity.
These findings can be useful in the design and synthesis of novel antidepressants.
Collapse
Affiliation(s)
- Ai-Ling Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Chao-Chao Wang
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hao Zhou
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yi-Fei Lang
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Shu-Yue Fu
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ren-Min Liu
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Kang Lei
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
6
|
Asif M, Alghamdi S. An Overview on Biological Importance of Pyrrolone and Pyrrolidinone Derivatives as Promising Scaffolds. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021; 26:5668. [PMID: 34577139 PMCID: PMC8468992 DOI: 10.3390/molecules26185668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Neurological and neurodegenerative diseases are debilitating conditions, and frequently lack an effective treatment. Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of 2-AG (2-arachidonoylglycerol), a neuroprotective endocannabinoid intimately linked to the generation of pro- and anti-inflammatory molecules. Consequently, synthesizing selective MAGL inhibitors has become a focus point in drug design and development. The purpose of this review was to summarize the diverse synthetic scaffolds of MAGL inhibitors concerning their potency, mechanisms of action and potential therapeutic applications, focusing on the results of studies published in the past five years. The main irreversible inhibitors identified were derivatives of hexafluoroisopropyl alcohol carbamates, glycol carbamates, azetidone triazole ureas and benzisothiazolinone, whereas the most promising reversible inhibitors were derivatives of salicylketoxime, piperidine, pyrrolidone and azetidinyl amides. We reviewed the results of in-depth chemical, mechanistic and computational studies on MAGL inhibitors, in addition to the results of in vitro findings concerning selectivity and potency of inhibitors, using the half maximal inhibitory concentration (IC50) as an indicator of their effect on MAGL. Further, for highlighting the potential usefulness of highly selective and effective inhibitors, we examined the preclinical in vivo reports regarding the promising therapeutic applications of MAGL pharmacological inhibition.
Collapse
Affiliation(s)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (A.Z.); (D.P.M.); (D.R.); (G.M.N.)
| | | | | | | |
Collapse
|
8
|
Nguyen NHK, Wu H, Tan H, Peng J, Rubnitz JE, Cao X, Pounds S, Lamba JK. Global Proteomic Profiling of Pediatric AML: A Pilot Study. Cancers (Basel) 2021; 13:3161. [PMID: 34202615 PMCID: PMC8268478 DOI: 10.3390/cancers13133161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is a heterogeneous disease with several recurrent cytogenetic abnormalities. Despite genomics and transcriptomics profiling efforts to understand AML's heterogeneity, studies focused on the proteomic profiles associated with pediatric AML cytogenetic features remain limited. Furthermore, the majority of biological functions within cells are operated by proteins (i.e., enzymes) and most drugs target the proteome rather than the genome or transcriptome, thus, highlighting the significance of studying proteomics. Here, we present our results from a pilot study investigating global proteomic profiles of leukemic cells obtained at diagnosis from 16 pediatric AML patients using a robust TMT-LC/LC-MS/MS platform. The proteome profiles were compared among patients with or without core binding factor (CBF) translocation indicated by a t(8;21) or inv(16) cytogenetic abnormality, minimal residual disease status at the end of the first cycle of chemotherapy (MRD1), and in vitro chemosensitivity of leukemic cells to cytarabine (Ara-C LC50). Our results established proteomic differences between CBF and non-CBF AML subtypes, providing insights to AML subtypes physiology, and identified potential druggable proteome targets such as THY1 (CD90), NEBL, CTSF, COL2A1, CAT, MGLL (MAGL), MACROH2A2, CLIP2 (isoform 1 and 2), ANPEP (CD13), MMP14, and AK5.
Collapse
Affiliation(s)
- Nam H. K. Nguyen
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (H.W.); (S.P.)
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (H.T.); (J.P.)
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (H.T.); (J.P.)
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Xueyuan Cao
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (H.W.); (S.P.)
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|