1
|
Kumar S, Panda SP. Comprehensive In Silico Analysis of Uncaria Tomentosa Extract: Chemical Profiling, Antioxidant Assessment, and CLASP Protein Interaction for Drug Design in Neurodegenerative Diseases. Curr Comput Aided Drug Des 2025; 21:94-109. [PMID: 38310572 DOI: 10.2174/0115734099284849231212095407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Uncaria tomentosa is a traditional medicinal herb renowned for its anti-inflammatory, antioxidant, and immune-enhancing properties. In the realm of neurodegenerative diseases (NDDS), CLASP proteins, responsible for regulating microtubule dynamics in neurons, have emerged as critical players. Dysregulation of CLASP proteins is associated with NDDS, such as Alzheimer's, Parkinson's, and Huntington's diseases. Consequently, comprehending the role of CLASP proteins in NDDS holds promise for the development of innovative therapeutic interventions. OBJECTIVES The objectives of the research were to identify phytoconstituents in the hydroalcoholic extract of Uncaria tomentosa (HEUT), to evaluate its antioxidant potential through in vitro free radical scavenging assays and to explore its potential interaction with CLASP using in silico molecular docking studies. METHODS HPLC and LC-MS techniques were used to identify and quantify phytochemicals in HEUT. The antioxidant potential was assessed through DPPH, ferric reducing antioxidant power (FRAP), nitric oxide (NO) and superoxide (SO) free radical scavenging methods. Interactions between conventional quinovic acid, chlorogenic acid, epicatechin, corynoxeine, rhynchophylline and syringic acid and CLASP were studied through in silico molecular docking using Auto Dock 4.2. RESULTS The HEUT extract demonstrated the highest concentration of quinovic acid derivatives. HEUT exhibited strong free radical-scavenging activity with IC50 values of 0.113 μg/ml (DPPH) and 9.51 μM (FRAP). It also suppressed NO production by 47.1 ± 0.37% at 40 μg/ml and inhibited 77.3 ± 0.69% of SO generation. Additionally, molecular docking revealed the potential interaction of quinovic acid with CLASP for NDDS. CONCLUSION The strong antioxidant potential of HEUT and the interaction of quinovic acid with CLASP protein suggest a promising role in treating NDDS linked to CLASP protein dysregulation.
Collapse
Affiliation(s)
- Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| |
Collapse
|
2
|
Rzepka Z, Bober-Majnusz K, Hermanowicz JM, Bębenek E, Chrobak E, Surażyński A, Wrześniok D. Assessment of the Lipophilicity of Indole Derivatives of Betulin and Their Toxicity in a Zebrafish Model. Molecules 2024; 29:4408. [PMID: 39339403 PMCID: PMC11434430 DOI: 10.3390/molecules29184408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
There are scientific studies indicating that the attachment of an indole moiety to the triterpene scaffold can lead to increased anticancer potential. Lipophilicity is one of the factors that may influence biological properties and is therefore an important parameter to determine for newly obtained compounds as drug candidates. In the present study, previously synthesized 3 and/or 28-indole-betulin derivatives were evaluated for lipophilicity by reversed-phase thin-layer chromatography. The experimental values of lipophilicity (logPTLC) were then subjected to correlation analysis with theoretical values of logP, as well as for selected physicochemical and pharmacokinetic parameters and anticancer activity. A toxicity test using zebrafish embryos and larvae was also conducted. High correlation was observed between the experimental and theoretical values of lipophilicity. We presented correlation equations and statistical parameters describing the relationships between logPTLC and several physicochemical and ADME parameters. We also revealed the lack of correlation between the experimental values of lipophilicity and anticancer activity. Moreover, experiments on zebrafish have confirmed no toxicity of the tested compounds, which was consistent with the results of the in silico toxicity analysis. The results demonstrated, using the example of indole derivatives of betulin, the utility of lipophilicity values in the context of predicting the biological activity of new compounds.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland;
| | - Katarzyna Bober-Majnusz
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland;
| |
Collapse
|
3
|
Guo Q, Xie C, Zi G, Lai X, Deerberg J, Hou G. Ir-Catalyzed Asymmetric Hydrogenation of N-Fused Heteroarenes with High Nitrogen Density: An Access to Chiral 2,5-Disubstituted 5,6-Dihydropyrrolo[1,2- a][1,2,4]triazolo[5,1- c]pyrazines. Org Lett 2024; 26:7363-7369. [PMID: 39178146 DOI: 10.1021/acs.orglett.4c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
A highly enantioselective Ir-catalyzed asymmetric hydrogenation of 2,5-disubstituted pyrrolo[1,2-a][1,2,4]triazolo[5,1-c]pyrazines containing four nitrogen atoms has been first realized. Under additive-free conditions, a variety of chiral 2,5-disubstituted 5,6-dihydropyrrolo[1,2-a][1,2,4]triazolo[5,1-c]pyrazines can be afforded in high yields (86-98%) with excellent enantioselectivities of up to 99% ee. This method provides a straightforward strategy for the efficient synthesis of chiral multinitrogen polyheterocyclic compounds.
Collapse
Affiliation(s)
- Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinzhong Lai
- Chemical Process Research and Development, Department of Chemistry, BeiGene, Ltd., Beijing 102206, China
| | - Joerg Deerberg
- Chemical Process Research and Development, Department of Chemistry, BeiGene, Ltd., Beijing 102206, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Zsoldos B, Nagy N, Donkó-Tóth V, Keglevich P, Weber M, Dékány M, Nehr-Majoros A, Szőke É, Helyes Z, Hazai L. Novel Piperazine Derivatives of Vindoline as Anticancer Agents. Int J Mol Sci 2024; 25:7929. [PMID: 39063170 PMCID: PMC11277489 DOI: 10.3390/ijms25147929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
A series of novel vindoline-piperazine conjugates were synthesized by coupling 6 N-substituted piperazine pharmacophores at positions 10 and 17 of Vinca alkaloid monomer vindoline through different types of linkers. The in vitro antiproliferative activity of the 17 new conjugates was investigated on 60 human tumor cell lines (NCI60). Nine compounds presented significant antiproliferative effects. The most potent derivatives showed low micromolar growth inhibition (GI50) values against most of the cell lines. Among them, conjugates containing [4-(trifluoromethyl)benzyl]piperazine (23) and 1-bis(4-fluorophenyl)methyl piperazine (25) in position 17 of vindoline were outstanding. The first one was the most effective on the breast cancer MDA-MB-468 cell line (GI50 = 1.00 μM), while the second one was the most effective on the non-small cell lung cancer cell line HOP-92 (GI50 = 1.35 μM). The CellTiter-Glo Luminescent Cell Viability Assay was performed with conjugates 20, 23, and 25 on non-tumor Chinese hamster ovary (CHO) cells to determine the selectivity of the conjugates for cancer cells. These compounds exhibited promising selectivity with estimated half-maximal inhibitory concentration (IC50) values of 2.54 μM, 10.8 μM, and 6.64 μM, respectively. The obtained results may have an impact on the design of novel vindoline-based anticancer compounds.
Collapse
Affiliation(s)
- Bernadett Zsoldos
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Nóra Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Viktória Donkó-Tóth
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Márton Weber
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - Miklós Dékány
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - Andrea Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
5
|
Kavaliauskas P, Grybaitė B, Sapijanskaite-Banevič B, Anusevičius K, Jonuškienė I, Stankevičienė R, Petraitienė R, Petraitis V, Grigalevičiūtė R, Meškinytė E, Stankevičius R, Mickevičius V. Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties. Molecules 2024; 29:3125. [PMID: 38999077 PMCID: PMC11243380 DOI: 10.3390/molecules29133125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Various cancer-associated morbidities remain a growing global health challenge, resulting in a significant burden on healthcare systems worldwide due to high mortality rates and a frequent lack of novel therapeutic options for advanced and localized disease. Reactive oxygen species (ROS) play an important role in cancer pathogenesis and response to chemotherapeutics; therefore, it is crucial to develop novel compounds with both antioxidant and anticancer activity. In this study, a series of previously reported 3-((4-hydroxyphenyl)amino)propanoic acid derivatives (compounds 1-36) were evaluated for their anticancer and antioxidant activities. Compounds 12, 20-22, and 29 were able to reduce A549 cell viability by 50% and suppress A549 cell migration in vitro. These compounds also showed favorable cytotoxicity properties towards noncancerous Vero cells. The most promising candidate, compound 20, exhibited potent antioxidant properties in the DPPH radical scavenging assay. These results demonstrate that 3-((4-hydroxyphenyl)amino)propanoic acid could be further explored as an attractive scaffold for the development of novel anticancer and antioxidant candidates.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Birute Sapijanskaite-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rima Stankevičienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rūta Petraitienė
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
| | - Vidmantas Petraitis
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Edita Meškinytė
- Center of Animal Production Research and Innovation, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania;
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| |
Collapse
|
6
|
Emami L, Zare F, Khabnadideh S, Rezaei Z, Sabahi Z, Zare Gheshlaghi S, Behrouz M, Emami M, Ghobadi Z, Madadelahi Ardekani S, Barzegar F, Ebrahimi A, Sabet R. Synthesis, design, biological evaluation, and computational analysis of some novel uracil-azole derivatives as cytotoxic agents. BMC Chem 2024; 18:3. [PMID: 38173035 PMCID: PMC10765869 DOI: 10.1186/s13065-023-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The design and synthesis of novel cytotoxic agents is still an interesting topic for medicinal chemistry researchers due to the unwanted side effects of anticancer drugs. In this study, a novel series of uracil-azole hybrids were designed and synthesized. The cytotoxic activity, along with computational studies: molecular docking, molecular dynamic simulation, density functional theory, and ADME properties were also, evaluated. The compounds were synthesized by using 3-methyl-6-chlorouracil as the starting material. Cytotoxicity was determined using MTT assay in the breast carcinoma cell line (MCF-7) and Hepatocellular carcinoma cell line (HEPG-2). These derivatives demonstrated powerful inhibitory activity against breast and hepatocellular carcinoma cell lines in comparison to Cisplatin as positive control. Among these compounds, 4j displayed the best selectivity profile and good activity with IC50 values of 16.18 ± 1.02 and 7.56 ± 5.28 µM against MCF-7 and HEPG-2 cell lines respectively. Structure-activity relationships revealed that the variation in the cytotoxic potency of the synthesized compounds was affected by various substitutions of benzyl moiety. The docking output showed that 4j bind well in the active site of EGFR and formed a stable complex with the EGFR protein. DFT was used to investigate the reactivity descriptors of 4a and 4j. The outputs demonstrated that these uracil-azole hybrids can be considered as potential cytotoxic agents.
Collapse
Affiliation(s)
- Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sabahi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Marzieh Behrouz
- Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghobadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | | | - Fatemeh Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran.
| |
Collapse
|
7
|
Aituarova A, Zhusupova GE, Zhussupova A, Ross SA. Study of the Chemical Composition of Rosa beggeriana Schrenk's Fruits and Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:3297. [PMID: 37765460 PMCID: PMC10536339 DOI: 10.3390/plants12183297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Rosa species are widely used in folk medicine in different countries of Asia and Europe, but not all species are studied in-depth. For instance, Rosa beggeriana Schrenk, a plant which grows in Central Asia, Iran, and some parts of China, is little described in articles. Column and thin-layer chromatography methods were used to isolate biologically active substances. From a study of fruits and leaves of Rosa beggeriana Schrenk, a large number of compounds were identified, seven of which were isolated: 3β,23-dihydroxyurs-12-ene (1), β-sitosterol (2), betulin (3), (+)-catechin (4), lupeol (5), ethyl linoleate (6), and ethyl linolenoate (7). Their structures were elucidated by 1H, DEPT and 13C NMR spectroscopy, mass spectrometry, and GC-MS (gas chromatography-mass spectrometry). The study also identified the structures of organic compounds, including volatile esters and acids. Consequently, comprehensive data were acquired concerning the chemical constitution of said botanical specimen.
Collapse
Affiliation(s)
- Aigerim Aituarova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Aizhan Zhussupova
- Department of Molecular Biology and Genetics, NPJSC Al-Farabi Kazakh National University, Al-Farabi, Ave. 71, Almaty 050040, Kazakhstan;
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, Oxford, MS 38677, USA;
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
8
|
Takibayeva AT, Zhumabayeva GK, Bakibaev AA, Demets OV, Lyapunova MV, Mamaeva EA, Yerkassov RS, Kassenov RZ, Ibrayev MK. Methods of Analysis and Identification of Betulin and Its Derivatives. Molecules 2023; 28:5946. [PMID: 37630198 PMCID: PMC10458966 DOI: 10.3390/molecules28165946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
This scientific work presents practical and theoretical material on the methods of analysis and identification of betulin and its key derivatives. The properties of betulin and its derivatives, which are determined by the structural features of this class of compounds and their tendency to form dimers, polymorphism and isomerization, are considered. This article outlines ways to improve not only the bioavailability but also the solubility of triterpenoids, as well as any hydrophobic drug substances, through chemical transformations by introducing various functional groups, such as carboxyl, hydroxyl, amino, phosphate/phosphonate and carbonyl. The authors of this article summarized the physicochemical characteristics of betulin and its compounds, systematized the literature data on IR and NMR spectroscopy and gave the melting temperatures of key acids and aldehydes based on betulin.
Collapse
Affiliation(s)
- Altynaray T. Takibayeva
- Department of Chemistry and Chemical Technologies, NJSC Karaganda Technical University Named after Abylkas Saginov, Karaganda 100027, Kazakhstan;
| | - Gulistan K. Zhumabayeva
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (G.K.Z.); (R.S.Y.)
| | - Abdigali A. Bakibaev
- Chemical Faculty, National Research Tomsk State University, 634028 Tomsk, Russia; (A.A.B.); (M.V.L.)
| | - Olga V. Demets
- Department of Chemistry and Chemical Technologies, NJSC Karaganda Technical University Named after Abylkas Saginov, Karaganda 100027, Kazakhstan;
| | - Maria V. Lyapunova
- Chemical Faculty, National Research Tomsk State University, 634028 Tomsk, Russia; (A.A.B.); (M.V.L.)
| | - Elena A. Mamaeva
- Chemical Faculty, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Rakhmetulla Sh. Yerkassov
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (G.K.Z.); (R.S.Y.)
| | - Rymchan Z. Kassenov
- Department of Organic Chemistry and Polymers, Chemistry Faculty, NJSC Karaganda University Named after Y.A. Buketov, Karaganda 100024, Kazakhstan; (R.Z.K.); (M.K.I.)
| | - Marat K. Ibrayev
- Department of Organic Chemistry and Polymers, Chemistry Faculty, NJSC Karaganda University Named after Y.A. Buketov, Karaganda 100024, Kazakhstan; (R.Z.K.); (M.K.I.)
| |
Collapse
|
9
|
Lahmadi G, Horchani M, Dbeibia A, Mahdhi A, Romdhane A, Lawson AM, Daïch A, Harrath AH, Ben Jannet H, Othman M. Novel Oleanolic Acid-Phtalimidines Tethered 1,2,3 Triazole Hybrids as Promising Antibacterial Agents: Design, Synthesis, In Vitro Experiments and In Silico Docking Studies. Molecules 2023; 28:4655. [PMID: 37375209 DOI: 10.3390/molecules28124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As part of the valorization of agricultural waste into bioactive compounds, a series of structurally novel oleanolic acid ((3β-hydroxyolean-12-en-28-oic acid, OA-1)-phtalimidines (isoindolinones) conjugates 18a-u bearing 1,2,3-triazole moieties were designed and synthesized by treating an azide 4 previously prepared from OA-1 isolated from olive pomace (Olea europaea L.) with a wide range of propargylated phtalimidines using the Cu(I)-catalyzed click chemistry approach. OA-1 and its newly prepared analogues, 18a-u, were screened in vitro for their antibacterial activity against two Gram-positive bacteria, Staphylococcus aureus and Listeria monocytogenes, and two Gram-negative bacteria, Salmonella thyphimurium and Pseudomonas aeruginosa. Attractive results were obtained, notably against L. monocytogenes. Compounds 18d, 18g, and 18h exhibited the highest antibacterial activity when compared with OA-1 and other compounds in the series against tested pathogenic bacterial strains. A molecular docking study was performed to explore the binding mode of the most active derivatives into the active site of the ABC substrate-binding protein Lmo0181 from L. monocytogenes. Results showed the importance of both hydrogen bonding and hydrophobic interactions with the target protein and are in favor of the experimental data.
Collapse
Affiliation(s)
- Ghofrane Lahmadi
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Ata Martin Lawson
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Adam Daïch
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mohamed Othman
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| |
Collapse
|
10
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem 2023; 256:115458. [PMID: 37163950 DOI: 10.1016/j.ejmech.2023.115458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Malaria is the fifth most lethal parasitic infection in the world. Antimalarial medications have played a crucial role in preventing and eradicating malaria. Numerous heterocyclic moieties have been incorporated into the creation of effective antimalarial drugs. The 4-aminoquinoline moiety is favoured in antimalarial drug discovery due to the diverse biological applications of its derivative. Since the 1960s, 4-aminoquinoline has been an important antimalarial drug due to its low toxicity, high tolerability, and rapid absorption after administration. This review focused on the antimalarial efficacy of the 4-aminoquinoline moiety hybridised with various heterocyclic scaffolds developed by scientists since 2018 against diverse Plasmodium clones. It could aid in the future development of more effective antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
11
|
Synthesis and cytotoxic activity of triterpenoids with N,O-heterocyclic fragments based on 2-formyl-1(2)-ene derivative of methyldihydrobetulonate. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Lombrea A, Semenescu AD, Magyari-Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Muntean D, Dehelean CA, Dinu S, Danciu C. Comparison of In Vitro Antimelanoma and Antimicrobial Activity of 2,3-Indolo-betulinic Acid and Its Glycine Conjugates. PLANTS (BASEL, SWITZERLAND) 2023; 12:1253. [PMID: 36986941 PMCID: PMC10058300 DOI: 10.3390/plants12061253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Malignant melanoma is one of the most pressing problems in the developing world. New therapeutic agents that might be effective in treating malignancies that have developed resistance to conventional medications are urgently required. Semisynthesis is an essential method for improving the biological activity and the therapeutic efficacy of natural product precursors. Semisynthetic derivatives of natural compounds are valuable sources of new drug candidates with a variety of pharmacological actions, including anticancer ones. Two novel semisynthetic derivatives of betulinic acid-N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2)-were designed and their antiproliferative, cytotoxic, and anti-migratory activity against A375 human melanoma cells was determined in comparison with known N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4) and naturally occurring betulinic acid (BI). A dose-dependent antiproliferative effect with IC50 values that ranged from 5.7 to 19.6 µM was observed in the series of all five compounds including betulinic acid. The novel compounds BA1 (IC50 = 5.7 µM) and BA2 (IC50 = 10.0 µM) were three times and two times more active than the parent cyclic structure B4 and natural BI. Additionally, compounds BA2, BA3, and BA4 possess antibacterial activity against Streptococcus pyogenes ATCC 19615 and Staphylococcus aureus ATCC 25923 with MIC values in the range of 13-16 µg/mL and 26-32 µg/mL, respectively. On the other hand, antifungal activity toward Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019 was found for compound BA3 with MIC 29 µg/mL. This is the first report of antibacterial and antifungal activity of 2,3-indolo-betulinic acid derivatives and also the first extended report on their anti-melanoma activity, which among others includes data on anti-migratory activity and shows the significance of amino acid side chain on the observed activity. The obtained data justify further research on the anti-melanoma and antimicrobial activity of 2,3-indolo-betulinic acid derivatives.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Alexandra-Denisa Semenescu
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Uldis Peipiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
- Nature Science Technologies Ltd., Rupnicu Str. 4, LV-2114 Olaine, Latvia
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| |
Collapse
|
13
|
Akhter N, Batool S, Khan SG, Rasool N, Anjum F, Rasul A, Adem Ş, Mahmood S, Rehman AU, Nisa MU, Razzaq Z, Christensen JB, Abourehab MAS, Shah SAA, Imran S. Bio-Oriented Synthesis and Molecular Docking Studies of 1,2,4-Triazole Based Derivatives as Potential Anti-Cancer Agents against HepG2 Cell Line. Pharmaceuticals (Basel) 2023; 16:211. [PMID: 37259360 PMCID: PMC9964635 DOI: 10.3390/ph16020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 08/22/2023] Open
Abstract
Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Naheed Akhter
- Department of Biochemistry, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sidra Batool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Sadaf Mahmood
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Aziz ur Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Mehr un Nisa
- Department of Chemistry, University of Lahore, Lahore 40100, Pakistan
| | - Zainib Razzaq
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Shah Alam 40450, Selangor D.E., Malaysia
| |
Collapse
|
14
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
15
|
Lupane Triterpene Derivatives Improve Antiproliferative Effect on Leukemia Cells through Apoptosis Induction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238263. [PMID: 36500355 PMCID: PMC9738192 DOI: 10.3390/molecules27238263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Leukemia is one of the most frequent types of cancer. No effective treatment currently exists, driving a search for new compounds. Simple structural modifications were made to novel triterpenes isolated from Phoradendron wattii. Of the three resulting derivatives, 3α-methoxy-24-hydroxylup-20(29)-en-28-oic acid (T1m) caused a decrease in the median inhibitory concentration (IC50) on the K562 cell line. Its mode of action was apparently apoptosis, ROS generation, and loss of mitochondrial membrane potential (MMP). Molecular docking analysis showed T1m to produce lower binding energies than its precursor for the Bcl-2 and EGFR proteins. Small, simple, and viable modifications to triterpenes can improve their activity against leukemia cell lines. T1m is a potentially promising element for future research. Clarifying the targets in its mode of action will improve its applicability.
Collapse
|
16
|
The C30-Modulation of Betulinic Acid Using 1,2,4-Triazole: A Promising Strategy for Increasing Its Antimelanoma Cytotoxic Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227807. [PMID: 36431906 PMCID: PMC9697306 DOI: 10.3390/molecules27227807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Cancer, in all its types and manifestations, remains one of the most frequent causes of death worldwide; an important number of anticancer drugs have been developed from plants, fungi and animals, starting with natural compounds that were later derivatized in order to achieve an optimized pharmacokinetic/pharmacological profile. Betulinic acid is a pentacyclic triterpenic compound that was identified as an anticancer agent whose main advantage consists in its selective activity, which ensures the almost total lack of cytotoxic side effects. Conjugates of betulinic acid with substituted triazoles, scaffolds with significant pharmacological properties, were synthesized and tested as anticancer agents in order to achieve new therapeutic alternatives. The current paper aims to obtain a C30-1,2,4-triazole derivative of betulinic acid simultaneously acetylated at C3 whose biological activity was tested against RPMI melanoma cells. The compound revealed significant cytotoxic effects at the tested concentrations (2, 10 and 50 μΜ) by significantly decreasing the cell viability to 88.3%, 54.7% and 24.5%, respectively, as compared to the control. The compound's testing in normal HaCaT cells showed a lack of toxicity, which indicates its selective dose-dependent anticancer activity. The investigation of its underlying molecular mechanism revealed an apoptotic effect induced at the mitochondrial level, which was validated through high-resolution respirometry studies.
Collapse
|
17
|
Ke Z, Pei T, Yang Z, Zhang X, Xu F, Xu Z, Ding J. Synthesis, biological evaluation and molecular docking of N, N’-bis([1,2,4]triazole[4,3- b][1,2,4,5]tetrazine-6-yl)alkylamine derivatives as potent c-Met antagonists. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221123516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A series of N, N’-bis([1,2,4]triazole[4,3- b][1,2,4,5]tetrazine-6-yl)alkylamine derivatives is designed, synthesized and evaluated for their inhibition activities against three tumor cell lines and c-Met kinase activity in vitro. These compounds are fully characterized by 1H NMR, 13C NMR, MS, IR and elemental analysis. Antitumor experiments indicate that some of these compounds exhibit significant inhibition activities against A549, Bewo and MCF-7 cancer cell lines. Among them, the IC50 values of 4a indicate better antitumor activities against the A549 (1.21 μM), Bewo (0.68 μM) and MCF-7 (3.74 μM) cell lines than the positive agent cisplatin (9.97 μM for A549, 10.46 μM for Bewo, and 15.03 μM for MCF-7), respectively.
Collapse
Affiliation(s)
- Zhonglu Ke
- School of Medicine & Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Tianyun Pei
- School of Medicine & Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, P.R. China
- National & Local Joint Engineering Research Center for High-Efficiency Refining and High-Quality Utilization of Biomass, School of Pharmacy, Changzhou University, Changzhou, P.R. China
| | - Zhenzhen Yang
- School of Medicine & Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Xuanhe Zhang
- School of Medicine & Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Feng Xu
- School of Medicine & Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Zihang Xu
- School of Medicine & Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Jixiang Ding
- School of Medicine & Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, P.R. China
| |
Collapse
|
18
|
Apoptotic and Cell Cycle Effects of Triterpenes Isolated from Phoradendron wattii on Leukemia Cell Lines. Molecules 2022; 27:molecules27175616. [PMID: 36080390 PMCID: PMC9458143 DOI: 10.3390/molecules27175616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Current antineoplastic agents present multiple disadvantages, driving an ongoing search for new and better compounds. Four lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-oic acid (1), 3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid (2), 3α,23-O-isopropylidenyl-3α,23-dihydroxylup-20(29)-en-28-oic acid (3), and 3α,23-dihydroxylup-20(29)-en-28-oic acid (4), previously isolated from Phoradendron wattii, were evaluated on two cell lines of chronic (K562) and acute (HL60) myeloid leukemia. Compounds 1, 2, and 4 decreased cell viability and inhibit proliferation, mainly in K562, and exhibited an apoptotic effect from 24 h of treatment. Of particular interest is compound 2, which caused arrest in active phases (G2/M) of the cell cycle, as shown by in silico study of the CDK1/Cyclin B/Csk2 complex by molecular docking. This compound [3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid] s a promising candidate for incorporation into cancer treatments and deserves further study.
Collapse
|
19
|
Surfactant based nanoreactor micellar assembly: An innovative route for synthesis of 2-thioxo-2,3-dihydroquinazolin-4(1H)-ones. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Niu Z, Ma S, Zhang L, Liu Q, Zhang S. Discovery of Novel Quinazoline Derivatives as Potent Antitumor Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123906. [PMID: 35745027 PMCID: PMC9230651 DOI: 10.3390/molecules27123906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
In this work, we designed and synthesized a novel series of quinazoline derivatives 6–19 and then evaluated their broad-spectrum antitumor activity against MGC-803, MCF-7, PC-9, A549, and H1975, respectively. Most of them demonstrated low micromolar cytotoxicity towards five tested cell lines. In particular, compound 18 exhibited nanomolar level inhibitory activity against MGC-803 cells with an IC50 value of 0.85 μM, indicating approximately a 32-fold selectivity against GES-1 (IC50 = 26.75 μM). Further preclinical evaluation showed that compound 18 remarkably inhibited the migration of MGC-803 cells, induced cell cycle arrest at G2/M, and induced MGC-803 apoptosis, resulting in decreasing the expression of both Bcl-2 and Mcl-1, and up-regulating the expression of both Bax and cleaved PARP. No death or obvious pathological damage was observed in mice by acute toxicity assay. The in vivo antitumor evaluation suggested that compound 18 significantly decreased the average tumor volume and tumor weight without any effect on body weight, which is better than 5-Fu. Therefore, compound 18 can be used as a lead compound for the further development of antitumor drugs in the future.
Collapse
Affiliation(s)
- Zhenxi Niu
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou 450018, China; (Z.N.); (S.M.)
| | - Shuli Ma
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou 450018, China; (Z.N.); (S.M.)
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, China;
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, China;
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Boston, MA 02129, USA
- Correspondence: (Q.L.); (S.Z.)
| | - Shengnan Zhang
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou 450018, China; (Z.N.); (S.M.)
- Correspondence: (Q.L.); (S.Z.)
| |
Collapse
|
21
|
Bijani S, Iqbal D, Mirza S, Jain V, Jahan S, Alsaweed M, Madkhali Y, Alsagaby SA, Banawas S, Algarni A, Alrumaihi F, Rawal RM, Alturaiki W, Shah A. Green Synthesis and Anticancer Potential of 1,4-Dihydropyridines-Based Triazole Derivatives: In Silico and In Vitro Study. Life (Basel) 2022; 12:519. [PMID: 35455010 PMCID: PMC9029820 DOI: 10.3390/life12040519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
A library of 1,4-dihydropyridine-based 1,2,3-triazol derivatives has been designed, synthesized, and evaluated their cytotoxic potential on colorectal adenocarcinoma (Caco-2) cell lines. All compounds were characterized and identified based on their 1H and 13C NMR (Nuclear Magnetic Resonance) spectroscopic data. Furthermore, molecular docking of best anticancer hits with target proteins (protein kinase CK2α, tankyrase1, and tankyrase2) has been performed. Our results implicated that most of these compounds have significant antiproliferative activity with IC50 values between 0.63 ± 0.05 and 5.68 ± 0.14 µM. Moreover, the mechanism of action of most active compounds 13ab' and 13ad' suggested that they induce cell death through apoptosis in the late apoptotic phase as well as dead phase, and they could promote cell cycle arrest at the G2/M phase. Furthermore, the molecular docking study illustrated that 13ad' possesses better binding interaction with the catalytic residues of target proteins involved in cell proliferation and antiapoptotic pathways. Based on our in vitro and in silico study, 13ad' was found to be a highly effective anti-cancerous compound. The present data indicate that dihydropyridine-linked 1,2,3-triazole conjugates can be generated as potent anticancer agents.
Collapse
Affiliation(s)
- Sabera Bijani
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Vicky Jain
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51425, Saudi Arabia;
| | - Rakesh M. Rawal
- Department of Life Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Anamik Shah
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
- B/H Forensic Laboratory, Saurashtra University Karmachari Cooperative Society, Rajkot 360005, Gujarat, India
| |
Collapse
|
22
|
Pei T, Zhang X, Yang Z, Ke Z, Shi Q, Mao Q, Gong S, Zeng H, Xu F, Xu D. Synthesis and anticancer activity of [1,2,4] triazole [4,3-b] [1,2,4,5] tetrazine derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2033743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tianyun Pei
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, Changzhou University, Changzhou, P.R. China
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Xuanhe Zhang
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Zhenzhen Yang
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Zhonglu Ke
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Qingsong Shi
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Qingqing Mao
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Shunze Gong
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Hanwei Zeng
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Feng Xu
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, Changzhou University, Changzhou, P.R. China
| |
Collapse
|
23
|
Herrera-España AD, Us-Martín J, Quintal-Novelo C, Mirón-López G, Quijano-Quiñones RF, Cáceres-Castillo D, Graniel-Sabido M, Moo-Puc RE, Mena-Rejón GJ. Cytotoxic and antiproliferative activity of thiazole derivatives of Ochraceolide A. Nat Prod Res 2021; 36:4714-4718. [PMID: 34747293 DOI: 10.1080/14786419.2021.2001809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of 15 novel 1,3-thiazole amide derivatives of the pentacyclic triterpene Ochraceolide A (1) was synthesized, characterized, and evaluated in vitro against three human cancer cell lines (MCF-7, MDA-MB-231 and SiHa) and a normal cell line (Vero). Synthetic derivatives were obtained by acylation of the 2-aminothiazole triterpene 2, previously reported. Remarkably, the 5-nitrofuramide derivative (2o) showed better cytotoxic and antiproliferative activity than compound 2 and the other derivatives against the three cancer cell lines with CC50 and IC50 values of 1.6-12.7 µM. Furthermore, butyramide derivative (2c) was approximately 25 times more selective than 2, as well as 3.4 times more selective than Docetaxel, against SiHa cells in the cytotoxic assay, while the phenyl amide derivatives were inactive against the three cancer cell lines.
Collapse
Affiliation(s)
- Angel D Herrera-España
- División de Ciencias de la Salud, Universidad de Quintana Roo. Av., Chetumal, Quintana Roo, México
| | - Jenner Us-Martín
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Carlos Quintal-Novelo
- Unidad Médica de Alta Especialidad, Centro Médico "Ignacio García Téllez", Instituto Mexicano del Seguro Social, Mérida, Yucatán, México
| | | | | | | | | | - Rosa E Moo-Puc
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Centro Médico "Ignacio García Téllez", Instituto Mexicano del Seguro Social, Mérida, Yucatán, México
| | | |
Collapse
|
24
|
EGFR-Targeted Pentacyclic Triterpene Analogues for Glioma Therapy. Int J Mol Sci 2021; 22:ijms222010945. [PMID: 34681605 PMCID: PMC8537327 DOI: 10.3390/ijms222010945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Glioma, particularly its most malignant form, glioblastoma multiforme (GBM), is the most common and aggressive malignant central nervous system tumor. The drawbacks of the current chemotherapy for GBM have aroused curiosity in the search for targeted therapies. Aberrantly overexpressed epidermal growth factor receptor (EGFR) in GBM results in poor prognosis, low survival rates, poor responses to therapy and recurrence, and therefore EGFR-targeted therapy stands out as a promising approach for the treatment of gliomas. In this context, a series of pentacyclic triterpene analogues were subjected to in vitro and in silico assays, which were conducted to assess their potency as EGFR-targeted anti-glioma agents. In particular, compound 10 was the most potent anti-glioma agent with an IC50 value of 5.82 µM towards U251 human glioblastoma cells. Taking into account its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), compound 10 exerts selective antitumor action towards Jurkat human leukemic T-cells. This compound also induced apoptosis and inhibited EGFR with an IC50 value of 9.43 µM compared to erlotinib (IC50 = 0.06 µM). Based on in vitro and in silico data, compound 10 stands out as a potential orally bioavailable EGFR-targeted anti-glioma agent endowed with the ability to cross the blood–brain barrier (BBB).
Collapse
|
25
|
Bildziukevich U, Kvasnicová M, Šaman D, Rárová L, Wimmer Z. Novel Oleanolic Acid-Tryptamine and -Fluorotryptamine Amides: From Adaptogens to Agents Targeting In Vitro Cell Apoptosis. PLANTS 2021; 10:plants10102082. [PMID: 34685891 PMCID: PMC8540097 DOI: 10.3390/plants10102082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022]
Abstract
Background: Oleanolic acid is a natural plant adaptogen, and tryptamine is a natural psychoactive drug. To compare their effects of with the effect of their derivatives, tryptamine and fluorotryptamine amides of oleanolic acid were designed and synthesized. Methods: The target amides were investigated for their pharmacological effect, and basic supramolecular self-assembly characteristics. Four human cancer cell lines were involved in the screening tests performed by standard methods. Results: The ability to display cytotoxicity and to cause selective cell apoptosis in human cervical carcinoma and in human malignant melanoma was seen with the three most active compounds of the prepared series of compounds. Tryptamine amide of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (3a) exhibited cytotoxicity in HeLa cancer cell lines (IC50 = 8.7 ± 0.4 µM) and in G-361 cancer cell lines (IC50 = 9.0 ± 0.4 µM). Fluorotryptamine amides of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (compounds 3b and 3c) showed cytotoxicity in the HeLa cancer cell line (IC50 = 6.7 ± 0.4 µM and 12.2 ± 4.7 µM, respectively). The fluorotryptamine amide of oleanolic acid (compound 4c) displayed cytotoxicity in the MCF7 cancer cell line (IC50 = 13.5 ± 3.3 µM). Based on the preliminary UV spectra measured in methanol/water mixtures, the compounds 3a–3c were also found to self-assemble into supramolecular systems. Conclusions: An effect of the fluorine atom present in the molecules on self-assembly was observed with 3b. Enhanced cytotoxicity has been achieved in 3a–4c in comparison with the effect of the parent oleanolic acid (1) and tryptamine. The compounds 3a–3c showed a strong induction of apoptosis in HeLa and G-361 cells after 24 h.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic;
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, CZ-16628 Prague, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic;
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague, Czech Republic;
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic;
- Correspondence: (L.R.); or (Z.W.)
| | - Zdeněk Wimmer
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic;
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, CZ-16628 Prague, Czech Republic
- Correspondence: (L.R.); or (Z.W.)
| |
Collapse
|
26
|
Khusnutdinova E, Petrova A, Zileeva Z, Kuzmina U, Zainullina L, Vakhitova Y, Babkov D, Kazakova O. Novel A-Ring Chalcone Derivatives of Oleanolic and Ursolic Amides with Anti-Proliferative Effect Mediated through ROS-Triggered Apoptosis. Int J Mol Sci 2021; 22:9796. [PMID: 34575964 PMCID: PMC8465963 DOI: 10.3390/ijms22189796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3β-hydroxy-C2-nicotinoylidene, 3β-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose-response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 μM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 μM against 33 tumor cell lines and <2 μM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.
Collapse
Affiliation(s)
- Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Zulfia Zileeva
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Ulyana Kuzmina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Liana Zainullina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Yulia Vakhitova
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya St., 400087 Volgograd, Russia;
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| |
Collapse
|
27
|
Abu Almaaty AH, Elgrahy NA, Fayad E, Abu Ali OA, Mahdy ARE, Barakat LAA, El Behery M. Design, Synthesis and Anticancer Evaluation of Substituted Cinnamic Acid Bearing 2-Quinolone Hybrid Derivatives. Molecules 2021; 26:4724. [PMID: 34443308 PMCID: PMC8400797 DOI: 10.3390/molecules26164724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
A new series of hybrid molecules containing cinnamic acid and 2-quinolinone derivatives were designed and synthesized. Their structures were confirmed by 1H-NMR, 13C-NMR and mass analyses. All the synthesized hybrid molecules were assessed for their in vitro antiproliferative activity against more than one cancer cell lines. Compound 3-(3,5-dibromo-7,8-dihydroxy-4-methyl-2-oxoquinolin-1(2H)-ylamino)-3-phenylacrylic acid (5a) with IC50 = 1.89 μM against HCT-116 was proved to the most potent compound in this study, as compared to standard drug staurosporin. DNA flow cytometry assay of compound 5a revealed G2/M phase arrest and pre-G1 apoptosis. Annexin V-FITC showed that the percentage of early and late apoptosis was increased. The results of topoisomerase enzyme inhibition activity showed that the hybrid molecule 5a displays potent inhibitory activity compared with control.
Collapse
Affiliation(s)
- Ali H. Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt;
| | - Nermeen A. Elgrahy
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said 42526, Egypt; (N.A.E.); (L.A.A.B.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed R. E. Mahdy
- Chemistry Department (The Division of Organic Chemistry), Faculty of Science, Port Said University, Port Said 42526, Egypt;
| | - Lamiaa A. A. Barakat
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said 42526, Egypt; (N.A.E.); (L.A.A.B.)
| | - Mohammed El Behery
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said 42526, Egypt; (N.A.E.); (L.A.A.B.)
| |
Collapse
|
28
|
Nitrogen-Containing Heterocycles as Significant Molecular Scaffolds for Medicinal and Other Applications. Molecules 2021; 26:molecules26154617. [PMID: 34361770 PMCID: PMC8347225 DOI: 10.3390/molecules26154617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
|
29
|
Moustafa GO, Shalaby A, Naglah AM, Mounier MM, El-Sayed H, Anwar MM, Nossier ES. Synthesis, Characterization, In Vitro Anticancer Potentiality, and Antimicrobial Activities of Novel Peptide-Glycyrrhetinic-Acid-Based Derivatives. Molecules 2021; 26:4573. [PMID: 34361728 PMCID: PMC8346995 DOI: 10.3390/molecules26154573] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Glycyrrhetinic acid (GA) is one of many interesting pentacyclic triterpenoids showing significant anticancer activity by triggering apoptosis in tumor cell lines. This study deals with the design and synthesis of new glycyrrhetinic acid (GA)-amino acid peptides and peptide ester derivatives. The structures of the new derivatives were established through various spectral and microanalytical data. The novel compounds were screened for their in vitro cytotoxic activity. The evaluation results showed that the new peptides produced promising cytotoxic activity against the human breast MCF-7 cancer cell line while comparing to doxorubicin. On the other hand, only compounds 3, 5, and 7 produced potent activity against human colon HCT-116 cancer cell line. The human liver cancer (HepG-2) cell line represented a higher sensitivity to peptide 7 (IC50; 3.30 μg/mL), while it appeared insensitive to the rest of the tested peptides. Furthermore, compounds 1, 3, and 5 exhibited a promising safety profile against human normal skin fibroblasts cell line BJ-1. In order to investigate the mode of action, compound 5 was selected as a representative example to study its in vitro effect against the apoptotic parameters and Bax/BCL-2/p53/caspase-7/caspase-3/tubulin, and DNA fragmentation to investigate beta (TUBb). Additionally, all the new analogues were subjected to antimicrobial assay against a panel of Gram-positive and Gram-negative bacteria and the yeast candida Albicans. All the tested GA analogues 1-8 exhibited more antibacterial effect against Micrococcus Luteus than gentamicin, but they exhibited moderate antimicrobial activity against the tested bacterial and yeast strains. Molecular docking studies were also simulated for compound 5 to give better rationalization and put insight to the features of its structure.
Collapse
Affiliation(s)
- Gaber O. Moustafa
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed Shalaby
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed M. Naglah
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa M. Mounier
- National Research Centre, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, 33-El Bohouth St., Giza 12622, Egypt;
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11111, Egypt;
| | - Manal M. Anwar
- National Research Centre, Department of Therapeutic Chemistry, Cairo 12622, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| |
Collapse
|