1
|
Meier JP, Zhang HJ, Freifelder R, Bhuiyan M, Selman P, Mendez M, Kankanamalage PHA, Brossard T, Pusateri A, Tsai HM, Leoni L, Penano S, Ghosh K, Broder BA, Markiewicz E, Renne A, Stadler W, Weichselbaum R, Nolen J, Kao CM, Chitneni SK, Rotsch DA, Szmulewitz RZ, Chen CT. Accelerator-Based Production of Scandium Radioisotopes for Applications in Prostate Cancer: Toward Building a Pipeline for Rapid Development of Novel Theranostics. Molecules 2023; 28:6041. [PMID: 37630292 PMCID: PMC10458970 DOI: 10.3390/molecules28166041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In the field of nuclear medicine, the β+ -emitting 43Sc and β- -emitting 47Sc are promising candidates in cancer diagnosis and targeted radionuclide therapy (TRT) due to their favorable decay schema and shared pharmacokinetics as a true theranostic pair. Additionally, scandium is a group-3 transition metal (like 177Lu) and exhibits affinity for DOTA-based chelators, which have been studied in depth, making the barrier to implementation lower for 43/47Sc than for other proposed true theranostics. Before 43/47Sc can see widespread pre-clinical evaluation, however, an accessible production methodology must be established and each isotope's radiolabeling and animal imaging capabilities studied with a widely utilized tracer. As such, a simple means of converting an 18 MeV biomedical cyclotron to support solid targets and produce 43Sc via the 42Ca(d,n)43Sc reaction has been devised, exhibiting reasonable yields. The NatTi(γ,p)47Sc reaction is also investigated along with the successful implementation of chemical separation and purification methods for 43/47Sc. The conjugation of 43/47Sc with PSMA-617 at specific activities of up to 8.94 MBq/nmol and the subsequent imaging of LNCaP-ENZaR tumor xenografts in mouse models with both 43/47Sc-PSMA-617 are also presented.
Collapse
Affiliation(s)
- Jason P. Meier
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Richard Freifelder
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
| | - Mohammed Bhuiyan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
| | - Phillip Selman
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Megan Mendez
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Pavithra H. A. Kankanamalage
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thomas Brossard
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
| | - Antonino Pusateri
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Sagada Penano
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - Kaustab Ghosh
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
| | - Brittany A. Broder
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Erica Markiewicz
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Amy Renne
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
| | - Walter Stadler
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Ralph Weichselbaum
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Jerry Nolen
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
| | - Chien-Min Kao
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
| | - Satish K. Chitneni
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - David A. Rotsch
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
- Medical Isotope Development Group, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Russell Z. Szmulewitz
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
| |
Collapse
|
2
|
Gagliardi M, Vincenzi A, Baroncelli L, Cecchini M. Stabilized Reversed Polymeric Micelles as Nanovector for Hydrophilic Compounds. Polymers (Basel) 2023; 15:946. [PMID: 36850229 PMCID: PMC9966941 DOI: 10.3390/polym15040946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Small hydrophilic drugs are widely used for systemic administration, but they suffer from poor absorption and fast clearance. Their nanoencapsulation can improve biodistribution, targeted delivery, and pharmaceutical efficacy. Hydrophilics are effectively encapsulated in compartmented particles, such as liposomes or extracellular vesicles, which are biocompatible but poorly customizable. Polymeric vectors can form compartmental structures, also being functionalizable. Here, we report a system composed of polymeric stabilized reversed micelles for hydrophilic drugs encapsulation. We optimized the preparation procedure, and calculated the critical micellar concentration. Then, we developed a strategy for stabilization that improves micelle stability upon dilution. We tested the drug loading and delivery capabilities with creatine as a drug molecule. Prepared stabilized reversed micelles had a size of around 130 nm and a negative z-potential around -16 mV, making them functional as a drug carrier. The creatine cargo increased micelle size and depended on the loading conditions. The higher amount of loaded creatine was around 60 μg/mg of particles. Delivery tests indicated full release within three days in micelles with the lower cargo, while higher loadings can provide a sustained release for longer times. Obtained results are interesting and encouraging to test the same system with different drug cargoes.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Agnese Vincenzi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| |
Collapse
|
3
|
Díez-Villares S, Pellico J, Gómez-Lado N, Grijalvo S, Alijas S, Eritja R, Herranz F, Aguiar P, de la Fuente M. Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine 2021; 16:5923-5935. [PMID: 34475757 PMCID: PMC8405882 DOI: 10.2147/ijn.s316767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Non-invasive imaging methodologies, especially nuclear imaging techniques, have undergone an extraordinary development over the last years. Interest in the development of innovative tracers has prompted the emergence of new nanomaterials with a focus on nuclear imaging and therapeutical applications. Among others, organic nanoparticles are of the highest interest due to their translational potential related to their biocompatibility and biodegradability. Our group has developed a promising new type of biocompatible nanomaterials, sphingomyelin nanoemulsions (SNs). The aim of this study is to explore the potential of SNs for nuclear imaging applications. Methods Ready-to-label SNs were prepared by a one-step method using lipid derivative chelators and characterized in terms of their physicochemical properties. Stability was assessed under storage and after incubation with human serum. Chelator-functionalized SNs were radiolabeled with 67Ga and 68Ga, and the radiochemical yield (RCY), radiochemical purity (RCP) and radiochemical stability (RCS) were determined. Finally, the biodistribution of 67/68Ga-SNs was evaluated in vivo and ex vivo. Results Here, we describe a simple and mild one-step method for fast and efficient radiolabeling of SNs with 68Ga and 67Ga radioisotopes. In vivo experiments showed that 67/68Ga-SNs can efficiently and indistinctly be followed up by PET and SPECT. Additionally, we proved that the biodistribution of the 67/68Ga-SNs can be conveniently modulated by modifying the surface properties of different hydrophilic polymers, and therefore the formulation can be further adapted to the specific requirements of different biomedical applications. Conclusion This work supports 67/68Ga-SNs as a novel probe for nuclear imaging with tunable biodistribution and with great potential for the future development of nanotheranostics.
Collapse
Affiliation(s)
- Sandra Díez-Villares
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain.,Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain.,University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| | - Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, 28029, Spain
| | - Noemí Gómez-Lado
- Nuclear Medicine Department and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, E-08034, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, E-08034, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Fernando Herranz
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, 28029, Spain.,NanoMedMol Group, Instituto de Química Medica (IQM),Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28006, Spain
| | - Pablo Aguiar
- Nuclear Medicine Department and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain.,Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain
| |
Collapse
|