1
|
Jiang Y, Jin Y, Shan Y, Zhong Q, Wang H, Shen C, Feng S. Advances in Physalis molecular research: applications in authentication, genetic diversity, phylogenetics, functional genes, and omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1407625. [PMID: 38993935 PMCID: PMC11236614 DOI: 10.3389/fpls.2024.1407625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
The plants of the genus Physalis L. have been extensively utilized in traditional and indigenous Chinese medicinal practices for treating a variety of ailments, including dermatitis, malaria, asthma, hepatitis, and liver disorders. The present review aims to achieve a comprehensive and up-to-date investigation of the genus Physalis, a new model crop, to understand plant diversity and fruit development. Several chloroplast DNA-, nuclear ribosomal DNA-, and genomic DNA-based markers, such as psbA-trnH, internal-transcribed spacer (ITS), simple sequence repeat (SSR), random amplified microsatellites (RAMS), sequence-characterized amplified region (SCAR), and single nucleotide polymorphism (SNP), were developed for molecular identification, genetic diversity, and phylogenetic studies of Physalis species. A large number of functional genes involved in inflated calyx syndrome development (AP2-L, MPF2, MPF3, and MAGO), organ growth (AG1, AG2, POS1, and CNR1), and active ingredient metabolism (24ISO, DHCRT, P450-CPL, SR, DUF538, TAS14, and 3β-HSB) were identified contributing to the breeding of novel Physalis varieties. Various omic studies revealed and functionally identified a series of reproductive organ development-related factors, environmental stress-responsive genes, and active component biosynthesis-related enzymes. The chromosome-level genomes of Physalis floridana Rydb., Physalis grisea (Waterf.) M. Martínez, and Physalis pruinosa L. have been recently published providing a valuable resource for genome editing in Physalis crops. Our review summarizes the recent progress in genetic diversity, molecular identification, phylogenetics, functional genes, and the application of omics in the genus Physalis and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Yan Jiang
- Hangzhou Normal University, Hangzhou, China
| | - Yanyun Jin
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yiyi Shan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Quanzhou Zhong
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Shangguo Feng
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Wang Z, Ding C, Tong Z, Yang L, Xiang S, Liang Y. Characterization and expression analysis of a thaumatin-like protein PpTLP1 from ground cherry Physalis pubescens. Int J Biol Macromol 2024; 254:127731. [PMID: 38287567 DOI: 10.1016/j.ijbiomac.2023.127731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Ground cherry, Physalis pubescens, is mainly cultivated as a fruit worldwide and popularly used as a food supplement and traditional Chinese medicine. Plants are challenged by external environmental stress and can initiate resistance to the stress through the regulation of pathogenesis-related (PR) proteins. Among PR proteins, PR-5, a thaumatin-like protein (TLP), was identified in many plants and found to be able to enhance stress resistance. However, PR-5 in ground cherry is not characterized and its expression is yet to be understood. In this study, a PR-5 protein PpTLP1 in P. pubescens was firstly identified. Analysis of the amino acid sequences revealed that PpTLP1 was highly similar to PR-NP24 identified in tomato with a difference in only one amino acid. Expression analysis indicated that the PpTLP1 gene was highly expressed in leaf while the PpTLP1 protein was tissue-specifically accumulated in cherry exocarp. Furthermore, the down-regulation of PpTLP1 in ground cherry was induced by NaCl treatment while the up-regulation was promoted by the infection of Sclerotinia sclerotiorum and Botrytis cinerea. This study will provide a new plant resource containing a TLP in Physalis genus and a novel insight for the improvement of postharvest management of ground cherry and other Solanaceae plants.
Collapse
Affiliation(s)
- Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chengsong Ding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhipeng Tong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Liuliu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Shibo Xiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Shi J, Zhang G, Ke W, Pan Y, Hou M, Chang C, Sa D, Lv M, Liu Y, Lu Q. Effect of endogenous sodium and potassium ions in plants on the quality of alfalfa silage and bacterial community stability during fermentation. FRONTIERS IN PLANT SCIENCE 2023; 14:1295114. [PMID: 38205017 PMCID: PMC10777314 DOI: 10.3389/fpls.2023.1295114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the impact of endogenous sodium and potassium ions in plants on the quality of alfalfa silage, as well as the stability of bacterial communities during fermentation. Silage was produced from the fermented alfalfa, and the chemical composition, fermentation characteristics, and microbiome were analyzed to understand their interplay and impact on silage fermentation quality. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1‰ (CK); (b) 1‰-2‰ (LP); (c) 2‰-3‰ (MP); (d) 3‰-4‰ (HP). The results revealed that the pH of silage was negatively correlated with the lactic acid content. With the increase of lactic acid (LA) content increased (26.3-51.0 g/kg DM), the pH value decreased (4.9-5.3). With the increase of salt stress, the content of Na+ in silage increased (2.2-5.4 g/kg DM). The presence of endogenous Na+ and K+ ions in plants significantly affected the quality of alfalfa silage and the dynamics of bacterial communities during fermentation. Increased salt stress led to changes in microbial composition, with Lactococcus and Pantoea showing a gradual increase in abundance, especially under high salt stress. Low pH inhibited the growth of certain bacterial genera, such as Pantoea and Pediococcus. The abundance of Escherichia-Shigella and Comamonas negatively correlated with crude protein (CP) content, while Enterococcus and Lactococcus exhibited a positive correlation. Furthermore, the accumulation of endogenous Na+ in alfalfa under salt stress suppressed bacterial proliferation, thereby reducing protein degradation during fermentation. The pH of the silage was high, and the LA content was also high. Silages from alfalfa under higher salt stress had higher Na+ content. The alpha diversity of bacterial communities in alfalfa silages showed distinct patterns. Desirable genera like Lactococcus and Lactobacillus predominated in silages produced from alfalfa under salt stress, resulting in better fermentation quality.
Collapse
Affiliation(s)
- Jinhong Shi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yongxiang Pan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Chun Chang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Mingju Lv
- Inner Mongolia Agriculture and Animal Husbandry Extension Center, Hohhot, China
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
5
|
Figueiredo FRA, Nóbrega JS, de Fátima RT, Ferreira JTA, da Silva Leal MP, Melo MF, Dias TJ, de Albuquerque MB. Impact of biostimulant and saline water on cape gooseberry ( Physalis peruviana L.) in Brazil. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2141-2150. [PMID: 34629784 PMCID: PMC8484386 DOI: 10.1007/s12298-021-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Production of Physalis peruviana L. has gained prominence in Northeastern Brazil. However, salinity limits the crop development in the Brazilian semiarid. Thus, this research aimed to evaluate the application of Acadian® biostimulant as mitigant of the deleterious effects of salinity on growth and gas exchange of P. peruviana plants. The experiment was combining different electrical conductivity of irrigation water (0.50, 1.23, 3.00, 4.44, and 5.50 dS m-1) and biostimulant doses (0.00, 1.45, 5.00, 8.55, and 10.00 mL L-1). The main variables evaluated were plant height, stem diameter, number of leaves, root length, leaf area, specific leaf area, leaf area ratio, absolute and relative growth rate for plant height, and gas exchange. Experimental results showed that an increase in electrical conductivity of irrigation water had negatively affected the growth components and gas exchange in P. peruviana. Also, the application of seaweed-based biostimulant improves the photosynthetic capacity (43.3%), reduces transpiration rate (26.5%) and water loss by this process, further it attenuated the deleterious effects of salinity on specific leaf area, leaf area ratio, and stomatal conductance. To further elucidate the effectiveness of biostimulant application as a mitigant of salt stress, research aimed at the biochemical and enzyme activities of the plant's antioxidant system should be conducted to better understand this process.
Collapse
|
6
|
Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation ( Dianthus caryophyllus L.) Roots. PLANTS 2021; 10:plants10071447. [PMID: 34371650 PMCID: PMC8309455 DOI: 10.3390/plants10071447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
The fungal pathogen Fusarium oxysporum f. sp. dianthi (Fod) is the causal agent of the vascular wilt of carnation (Dianthus caryophyllus L.) and the most prevalent pathogen in the areas where this flower is grown. For this reason, the development of new control strategies against Fod in carnation has been continuously encouraged, in particular those based on the implementation of plant resistance inducers that can trigger defensive responses to reduce the disease incidence, even at lower economical and environmental cost. In the present study, the effect of the soil supplementation of a biotic elicitor (i.e., ultrasound-assisted dispersion obtained from Fod mycelium) on disease severity and phenolic-based profiles of roots over two carnation cultivars was evaluated. Results suggest that the tested biotic elicitor, namely, eFod, substantially reduced the progress of vascular wilting in a susceptible cultivar (i.e., ‘Mizuki’) after two independent in vivo tests. The LC-MS-derived semi-quantitative levels of phenolic compounds in roots were also affected by eFod, since particular anthranilate derivatives, conjugated benzoic acids, and glycosylated flavonols were upregulated by elicitation after 144 and 240 h post eFod addition. Our findings indicate that the soil-applied eFod has an effect as a resistance inducer, promoting a disease severity reduction and accumulation of particular phenolic-like compounds.
Collapse
|