1
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. Glycoconj J 2024; 41:301-322. [PMID: 39218819 DOI: 10.1007/s10719-024-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.
Collapse
Affiliation(s)
- Maruti J Gurav
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - J Manasa
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Ashwini S Sanji
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Prasanna H Megalamani
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Vishwanath B Chachadi
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India.
| |
Collapse
|
3
|
Jabeen I, Altemimi AB, Rabail R, Kafeel S, Shahid A, Inam-Ur-Raheem M, Mousavi Khaneghah A, Aadil RM. Exploring the astonishing beneficial effects of round gourd (Praecitrullus fistulosus) and plant lectins towards cancer: A comprehensive review. Int J Biol Macromol 2024; 271:132629. [PMID: 38815952 DOI: 10.1016/j.ijbiomac.2024.132629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Praecitrullus fistulosus, commonly known as round gourd or tinda, is a remarkable source of bioactive substances like polyphenols, antioxidants, carotene, magnesium, and vitamin C. It is considered one of the Cucurbitaceae family due to its medicinal features. Plant lectins are carbohydrate-binding proteins that can bind and identify the carbohydrate moieties upon cancerous cells demonstrated some anticancer potentials. Several plant lectins are helpful as cancer biomarkers because they can find cancer cells and contribute to cell death initiation via apoptosis and autophagy, suggesting the possible role of cancer-inhibiting pathways. Therefore, round gourd and lectins might be useful in the controlling of cancer. This study compiled the most recent scientific literature regarding the round gourd and numerous plant lectins, and the clinical trials of lectins exploring their effects on cancer were examined. Research according to the literature, round gourd, and lectins demonstrated pharmacological alterations not only in cancer but in many other disorders as well. Thus, clinical investigations proved the beneficial impacts of round gourd and lectins on cancer due to their antioxidants, anti-inflammatory, and anticarcinogenic properties. Further studies are required to fully comprehend the potential applications of these plant-derived compounds against cancer, as well as to identify the round gourd components and clarify their mode of action.
Collapse
Affiliation(s)
- Ifrah Jabeen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq; College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Kafeel
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Arashi Shahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Inam-Ur-Raheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
4
|
Wang P, Min S, Chen C, Hu J, Wei D, Wang X. Phytohemagglutinin from Phaseolus vulgaris enhances the lung cancer cell chemotherapy sensitivity by changing cell membrane permeability. J Nat Med 2024; 78:355-369. [PMID: 38265611 DOI: 10.1007/s11418-023-01772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
Chemotherapy is still a prevalent strategy for clinical lung cancer treatment. However, the inevitable emerged drug resistance has become a great hurdle to therapeutic effect. Studies have demonstrated that the primary cause of drug resistance is a decrease in the chemotherapeutic medicine concentration. Several lectins have been confirmed to be effective as chemotherapy adjuvants, enhancing the anti-tumor effects of chemotherapy drugs. Here, we combined phytohemagglutinin (PHA), which has been reported possess anti-tumor effects, with chemotherapy drugs Cisplatin (DDP) and Adriamycin (ADM) on lung cancer cells to detect the sensitivities of PHA as a chemotherapy adjuvant. Our results demonstrated that the PHA significantly enhanced the sensitivity of lung cancer cells to DDP and ADM, and Western blot showed that PHA combined with DDP or ADM enhance cytotoxic effects by inhibiting autophagy and promoting apoptosis. More importantly, we found PHA enhanced the chemotherapeutic drugs cytotoxicity by changing the cell membrane to increase the intracellular chemotherapeutic drugs concentration. Besides, the combination of PHA and ADM increased the ADM concentration in the multidrug-resistant strain A549-R cells and achieved the drug sensitization effect. Our results suggest that PHA combined with chemotherapy can be applied in the treatment of lung cancer cells and lung cancer multidrug-resistant strains, and provide a novel strategy for clinical tumor chemotherapy and a new idea to solve the problem of drug resistance in clinical lung cancer.
Collapse
Affiliation(s)
- Peipei Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shitong Min
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Congliang Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dapeng Wei
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xia Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Saengboonmee C, Obchoei S, Sawanyawisuth K, Wongkham S. Revision of potential prognostic markers of cholangiocarcinoma for clinical practice. Expert Rev Anticancer Ther 2023; 23:517-530. [PMID: 37052887 DOI: 10.1080/14737140.2023.2203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an aggressive cancer arising from any part of the biliary system. Effective treatment of CCA remains limited, resulting in the poor overall prognosis of patients. The effective prognostic biomarkers for CCA remain lacking, and most are at the research level. AREAS COVERED The incidences of CCAs, classification, genetic and molecular characteristics, and distinct clinical outcomes in each subtype are introduced. The prognostic markers currently used in clinical practice are reviewed. Studies of biomarkers in defining the aggressiveness of CCA, identifying patients with a potential tumor recurrence, and predicting the survival time, are reviewed. Emerging biomarkers discovered from advanced high throughput technology over the past five years are updated and summarized. Finally, in-depth and critical revision on the prognostic biomarkers for CCA reported from various sources of specimens, e.g. tissues, blood, bile, etc. are discussed. CONCLUSION Many prognostic biomarkers for CCA have been proposed and hold promising clinical value. However, these markers are rarely used in the real clinical world due to several factors. Understanding the roles and importance of these prognostic markers may fundamentally impact the therapeutic management of CCA, and hopefully, improve the development of custom and patient-directed therapies for CCA.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|