1
|
Wu Y, Zhai S, Fang M, Zhang H, Chen Y. Evaluation of the growth performance, meat quality, and gut microbiota of broilers fed diets containing walnut green husk extract. Poult Sci 2024; 103:104176. [PMID: 39180783 PMCID: PMC11387355 DOI: 10.1016/j.psj.2024.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
This study was conducted to evaluate the effects of walnut green husk extract (WGHe) on the growth performance, meat quality, antioxidative status, gut morphology, and microbiota diversity of broilers. A total of 216 one-day-old broilers were divided into 4 groups, each consisting of 9 replicates (6 birds per replicate) as follows: 1) control group, basal diet; 2) antibiotic group, basal diet supplemented with enduracidin and colistin sulfate; 3) low-dose group, basal diet supplemented with 5.0 g/kg WGHe; and 4) high-dose group, basal diet supplemented with 10.0 g/kg WGHe. The results revealed that the percentage of abdominal fat decreased, and the ratio of the duodenal villus length to crypt depth (V/C), as well as the α-diversity of the ileal microbiota, increased with 10.0 g/kg WGHe supplementation (P < 0.05). The shear force of the breast muscle and plasma malondialdehyde (MDA) concentration decreased, whereas the plasma peroxidase (POD) activity, Trolox equivalent antioxidant capacity (TEAC), and jejunal villus length increased in response to WGHe supplementation (P < 0.05). Compared with the antibiotic diet, the addition of 5.0 g/kg WGHe resulted in a significant increase in the relative abundances of Candidatus Arthromitus, Eubacterium coprostanoligenes, and Ruminococcaceae UCG-014 (P < 0.01). Furthermore, the addition of 10.0 g/kg WGHe increased the relative abundances of Candidatus Arthromitus and Lachnoclostridium, whereas the relative abundance of unidentified Chloroplast decreased (P < 0.05). In conclusion, dietary supplementation with 10.0 g/kg WGHe is advantageous for intestinal health, meat quality, and antioxidant status in broilers, suggesting its potential as a functional additive in poultry production.
Collapse
Affiliation(s)
- Ying Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Shaohua Zhai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Meiyan Fang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Huiling Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Yong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| |
Collapse
|
2
|
Zhao X, Ying J, Wang Z, Wang Y, Li Z, Gu T, Liu S, Li Y, Liu B, Xin F, Wen B. In vitro digestive properties and the bioactive effect of walnut green husk on human gut microbiota. Front Microbiol 2024; 15:1392774. [PMID: 39224223 PMCID: PMC11367867 DOI: 10.3389/fmicb.2024.1392774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Walnut green husk (WGH) is a waste byproduct from walnut industry. However, it is not well-known about its bioactive effect on human gut health. Methods This study conducted in vitro digestion and fermentation experiments to study the bioactive effect of WGH. Results Microbial fermentation was the primary mechanism to efficiently release phenolics and flavonoids, resulting in more excellent antioxidant capacities (DPPH, ABTS, and FRAP assays), which reached a highest value with 14.82 ± 0.01 mg VcE/g DW, 3.47 ± 0.01 mmol TE/g DW, and 0.96 ± 0.07 mmol FeSO4·7H2O/g DW, respectively. The surface microstructure of WGH became loose and fragmented after microbial fermentation. The analytical results of gut microbiota demonstrated that WGH could significantly increase the relative abundance of Proteobacteria in phylum level and Phascolarctobacterium in genus level while certain pro-inflammatory bacteria (such as Clostridium_sensu_stricto_1, Dorea, Alistipes, and Bilophila) was inhibited. Additionally, 1,373 differential metabolites were identified and enriched in 283 KEGG pathways. Of which some metabolites were significantly upregulated including ferulic acid, chlorogenic acid, umbelliferone, scopolin, muricholic acid, and so forth. Discussion These results indicated that WGH could have antioxidant and anti-inflammatory activities in the human gut, which could improve the economical value of WGH in the food industry.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiabao Ying
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhuochen Wang
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yulong Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Bing Liu
- Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Agricultural Product Processing and Nutritional Health, Chinese Academy of Agricultural Sciences (CAAS), Cangzhou, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Agricultural Product Processing and Nutritional Health, Chinese Academy of Agricultural Sciences (CAAS), Cangzhou, China
| |
Collapse
|
3
|
da Silva TL, Pinheiro JGDO, de Moura ATC, Maia Neto CG, Correia FLP, Comin MSK, da Silva RCF, de Araújo SVF, Barreto SMAG, Oliveira ADS, Damasceno GADB, Ferrari M. Evaluation of the antioxidant and antityrosinase activities of Prosopis juliflora fruit extract as a novel multifunctional bioactive ingredient and its potential applicability in pro-ageing and skin colour harmonization cosmetic products. Int J Cosmet Sci 2024. [PMID: 39138627 DOI: 10.1111/ics.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Prosopis juliflora, commonly known as algaroba or mesquite, was introduced and has since proliferated throughout the semi-arid region of the Caatinga biome. Various studies have documented its properties, including antimicrobial, antioxidant, and antitumor activities, attributed to the presence of diverse secondary metabolites such as alkaloids, terpenoids, tannins, and flavonoids. The objective of this study was to evaluate the antioxidant and antityrosinase activities of P. juliflora fruit extract as a multifunctional active ingredient, and to develop cosmetic formulations containing this vegetal extract for potential applications in skincare products targeting pro-ageing and skin colour homogenization properties. METHODS The extraction process followed established protocols. Chemical characterization of the extract involved quantification of total flavonoids and phenolic compounds, along with Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. In vitro antioxidant activity was assessed using different methods. Antityrosinase activity was determined by employing enzymatic assays. Cosmetic formulations containing Disodium EDTA, Phenoxyethanol (and) Ethylhexyl Glycerin, Distilled Water, Sodium Acrylates Copolymer Lecithin, Polyacrylamide (and) C13-14 Isoparaffin (and) Laureth-7, and 3.0% of the investigated plant extract were subjected to preliminary and accelerated stability tests. RESULTS The extract demonstrated a concentration of total flavonoids (1.71 ± 0.26 μg EQ/mg) and exhibited concentrations of phenolic compounds at 0.21 ± 0.01 mg EAG/g. Metabolites such as flavonoids and saponins were annotated, as well as some of their respective glycosidic derivatives. The extract showed antioxidant potential and the ability to inhibit the oxidation cascade in both the initiation and propagation phases. Moreover, the extract exhibited noteworthy inhibition of antityrosinase activity, presenting 62.48 ± 2.09 at a concentration of 30.00 mg/mL. The formulations were stable in accelerated stability tests over a 60-day period. CONCLUSION This research not only demonstrates scientifically by demonstrating the potential of a plant from the Caatinga biome with antioxidant and antityrosinase properties in the development of cosmetic products aimed at pro-ageing effects and skin colour harmonization, but also adds value to the P. juliflora production chain. This valorization encompasses various aspects which include environmental, social, and biodiversity responsibilities.
Collapse
Affiliation(s)
- Tássyo Leandro da Silva
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | | | - Arthur Thomaz Coutinho de Moura
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Christovam Gondim Maia Neto
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Francisco Lucas Pereira Correia
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Marcielle Sayuri Kubo Comin
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Rafaela Costa Ferreira da Silva
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | | | | | - Artur de Santana Oliveira
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Gabriel Azevedo de Brito Damasceno
- Multidisciplinary Health Institute, Anísio Teixeira Campus, Federal University of Bahia - UFBA, Rua Hormindo Barros, Vitória da Conquista, BA, Brazil
| | - Márcio Ferrari
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| |
Collapse
|
4
|
Hussain MA, Parveen G, Bhat AH, Reshi ZA, Ataya FS, Handoo ZA. Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1743. [PMID: 38999583 PMCID: PMC11244520 DOI: 10.3390/plants13131743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) exhibit diverse applications, including antimicrobial, UV-blocking, and catalytic properties, due to their unique structure and properties. This study focused on the characterization of zinc oxide nanoparticles (ZnO NPs) synthesized from Juglans regia leaves and their application in mitigating the impact of simultaneous infection by Meloidogyne arenaria (root-knot nematode) and Macrophomina phaseolina (root-rot fungus) in cowpea plants. The characterization of ZnO NPs was carried out through various analytical techniques, including UV-visible spectrophotometry, Powder-XRD analysis, FT-IR spectroscopy, and SEM-EDX analysis. The study confirmed the successful synthesis of ZnO NPs with a hexagonal wurtzite structure and exceptional purity. Under in vitro conditions, ZnO NPs exhibited significant nematicidal and antifungal activities. The mortality of M. arenaria juveniles increased with rising ZnO NP concentrations, and a similar trend was observed in the inhibition of M. phaseolina mycelial growth. SEM studies revealed physical damage to nematodes and structural distortions in fungal hyphae due to ZnO NP treatment. In infected cowpea plants, ZnO NPs significantly improved plant growth parameters, including plant length, fresh mass, and dry mass, especially at higher concentrations. Leghemoglobin content and the number of root nodules also increased after ZnO NP treatment. Additionally, ZnO NPs reduced gall formation and egg mass production by M. arenaria nematodes and effectively inhibited the growth of M. phaseolina in the roots. Furthermore, histochemical analyses demonstrated a reduction in oxidative stress, as indicated by decreased levels of reactive oxygen species (ROS) and lipid peroxidation in ZnO NP-treated plants. These findings highlight the potential of green-synthesized ZnO NPs as an eco-friendly and effective solution to manage disease complex in cowpea caused by simultaneous nematode and fungal infections.
Collapse
Affiliation(s)
- Mir Akhtar Hussain
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Ghazala Parveen
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Aashaq Hussain Bhat
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India;
| | - Zubair Altaf Reshi
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Zaffar A. Handoo
- Mycology & Nematology Genetic Diversity & Biology Laboratory, USDA, ARS, Bldg. 010A, Rm. 111, 118, BARC-West 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| |
Collapse
|
5
|
Ullah H, Badshah L. The ethnobotanical heritage of Lotkuh, a high-altitude tribal haven of Chitral, the Eastern Hindu Kush, Pakistan. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:54. [PMID: 38764009 PMCID: PMC11102610 DOI: 10.1186/s13002-024-00687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND In northwestern Pakistan, Lotkuh is a high-altitude terrain nestled within the eastern Hindu Kush region. Enclaved by towering peaks and harboring a unique culture, the region mirrors the geographical and cultural diversity of Pakistan. In this geographically isolated region, a treasure trove of ethnobotanical knowledge unfolds through generations of interaction between the inhabitants and indigenous plants, resulting in a profound understanding of the plant uses in nutritional, medicinal, cultural, and ritual contexts. Thus, the study seeks to gather, analyze, and document the indigenous knowledge of plant utilization of the distinct tribal culture. METHODS Through semi-structured questionnaires, inventory interviews, and participatory workshops, data were collected by engaging a cohort of 120 local respondents. The collected data were then classified into nine distinct use categories, following which quantitative indices were calculated. RESULTS The research identified a total of 150 plant species spanning across 59 different families and categorized them into 9 distinct usage groups. Among these, Astragalus oihorensis, Astragalus owirensis, Cicer nuristanicum, Geranium parmiricum, and Rochelia chitralensis stand out as novel species with distinctive applications. Notably, medicinal use garnered 600 reports, while animal feed, veterinary applications, human consumption, and toxicity recorded 500, 450, 425, and 104 reports, respectively. Informant consensus was high ranging between 0.8 and 0.9 with most agreement on human food and animal feed category. Platanus orientalis and Juglans regia, with RFC 0.91, were the most cited. The Family Importance Value (FIV) of Juglandaceae and Platanaceae, each with an FIV of 0.91, and Capparidaceae with an FIV of 0.83 indicate the intricate role the families play. CONCLUSIONS In this study, we explore 150 ethnobotanical species, uncovering novel entries within ethnobotanical literature. Among these, several species showcase unique uses previously undocumented in Pakistani literature. Our research sheds light on the intricate interaction between plants and the distinct cultural landscape of the Lotkuh region.
Collapse
Affiliation(s)
- Hafiz Ullah
- Phytoecology Lab, Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Lal Badshah
- Phytoecology Lab, Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| |
Collapse
|
6
|
Mukarram SA, Wandhekar SS, Ahmed AEM, Pandey VK, Csaba O, Lajos D, József P, Harsányi E, Bela K. Exploring the Ecological Implications, Gastronomic Applications, and Nutritional and Therapeutic Potential of Juglans regia L. (Green Walnut): A Comprehensive Review. Nutrients 2024; 16:1183. [PMID: 38674873 PMCID: PMC11055045 DOI: 10.3390/nu16081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The green walnut, which is frequently overlooked in favor of its more mature sibling, is becoming a topic of great significance because of its unique ecological role, culinary flexibility, and therapeutic richness. The investigation of the bioactive substances found in green walnuts and their possible effects on human health has therapeutic potential. Juglans regia L. is an important ecological component that affects soil health, biodiversity, and the overall ecological dynamic in habitats. Comprehending and recording these consequences are essential for environmental management and sustainable land-use strategies. Regarding cuisine, while black walnuts are frequently the main attraction, green walnuts have distinct tastes and textures that are used in a variety of dishes. Culinary innovation and the preservation of cultural food heritage depend on the understanding and exploration of these gastronomic characteristics. Omega-3 fatty acids, antioxidants, vitamins, and minerals are abundant in green walnuts, which have a comprehensive nutritional profile. Walnuts possess a wide range of pharmacological properties, including antioxidant, antibacterial, antiviral, anticancer, anti-inflammatory, and cognitive-function-enhancing properties. Consuming green walnuts as part of one's diet helps with antioxidant defense, cardiovascular health, and general well-being. Juglans regia L., with its distinctive flavor and texture combination, is not only a delicious food but also supports sustainable nutrition practices. This review explores the nutritional and pharmacological properties of green walnuts, which can be further used for studies in various food and pharmaceutical applications.
Collapse
Affiliation(s)
- Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science & Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (A.E.M.A.); (K.B.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
- Young Scientist, World Food Forum, I-00100 Rome, Italy
| | - Sangram S. Wandhekar
- Department of Food Engineering, College of Food Technology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani 431402, Maharashtra, India
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Faculty of Agriculture, Food Science & Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (A.E.M.A.); (K.B.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North 13314, Sudan
| | - Vinay Kumar Pandey
- RDC, Biotechnology Department, Manav Rachna International Institute of Research and Studies, Faridabad 121004, Haryana, India;
| | - Oláh Csaba
- Department of Neurosurgery, Borsod County Teaching Hospital, 3526 Miskolc, Hungary;
| | - Daróczi Lajos
- Y-Food Ltd., Dózsa György út 28/A, 4100 Berettyóújfalu, Hungary;
| | - Prokisch József
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Endre Harsányi
- Faculty of Agriculture, Food Science and Environmental Management, Agricultural Research Institutes and Academic Farming (AKIT), University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Kovács Bela
- Faculty of Agriculture, Food Science & Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (A.E.M.A.); (K.B.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Ferrara E, Cice D, Piccolella S, Esposito A, Petriccione M, Pacifico S. 'Sorrento' and 'Tulare' Walnut Cultivars: Morphological Traits and Phytochemical Enhancement of Their Shell Waste. Molecules 2024; 29:805. [PMID: 38398557 PMCID: PMC10893203 DOI: 10.3390/molecules29040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Walnut processing generates considerable quantities of by-products that could be reprocessed into value-added products that have food and non-food applications. In this context, the aim of this study is to characterize the 'Sorrento' and 'Tulare' walnut cultivars using the UPOV guidelines and analyze the chemical composition and antioxidant activity of their shells. Insight into the chemical composition of the different granulometric fractions of walnut shell, obtained by sieving, was obtained following ultrasound-assisted extraction by Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS). The total phenolic, flavonoid, and tannin content and antiradical capacity, obtained by DPPH and ABTS assays, and the Fe(III) reducing power of the extracts were also evaluated. The UHPLC-HRMS analysis indicated the presence of thirty-two compounds ascribable to four major classes of specialized metabolites. Furthermore, the extraction efficiency of gallic acid, ellagic acid derivatives, as well as glansreginin A, increased with the decrease in shell matrix particle size in contrast to chlorogenic acids and flavonoid glycosides. This is the first study to highlight new knowledge on the chemical composition of walnut shells. The results obtained demonstrate the feasibility of recovering valuable bioactive components from agro-waste that may be further valorized.
Collapse
Affiliation(s)
- Elvira Ferrara
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy;
| | - Danilo Cice
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy;
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
| | - Assunta Esposito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
| | - Milena Petriccione
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy;
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
| |
Collapse
|
8
|
Zhang D, Ye N, Li M, Dai G, Ma Y, Wang Y, Liu C, Ma H. Walnut green husk extract enhances the effect of chlorine dioxide on kernel quality and antioxidant properties of fresh-eating walnuts during their shelf life. Food Chem 2023; 428:136797. [PMID: 37418879 DOI: 10.1016/j.foodchem.2023.136797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Fresh-eating walnuts are perishable and become mildewed during shelf life, limiting their sales span. The effects of chlorine dioxide (ClO2) alone and its combination with walnut green husk extract (WGHE) on shelf stored fresh walnuts were investigated to develop a pollution-free preservative for the produce. The initial development of mildew incidence was delayed by both treatments under 25 °C, whereas, WGHE + ClO2 acted more effectively than ClO2 under 5 °C. The WGHE + ClO2 treatment presented superior effects on improving moisture, soluble sugar and total phenol content, alleviating loss of oil and unsaturated fatty acid and delaying peroxide value increase of walnut kernels at both temperatures. Both treatments inhibited the activities of three lipolytic enzymes and two oxidases at 25 °C and 5 °C, WGHE + ClO2 acted more effectively at 5 °C. The results guide the combined application of WGHE with ClO2 on shelf preservation of fresh walnut.
Collapse
Affiliation(s)
- Dongli Zhang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Niu Ye
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingrui Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoli Dai
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaobin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huiling Ma
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Mateș L, Rusu ME, Popa DS. Phytochemicals and Biological Activities of Walnut Septum: A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12030604. [PMID: 36978850 PMCID: PMC10045788 DOI: 10.3390/antiox12030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
In the last few decades, scientific evidence has stressed the importance of plants in the prevention and/or supportive treatment of a plethora of diseases, many of them chronic, age-associated disorders. Juglans regia L. is a traditional plant that has been integrated into traditional medicine since ancient times. Due to the presence of biologically active compounds, walnut was used in the treatment of various maladies. Recently, investigations have focused on the walnut by-products and waste products, with research on their valuable constituents and active properties. Among these secondary products, walnut septum was analyzed in several studies, its phytochemical profile described, and some of the biological activities examined. However, compared to other walnut by-products, no comprehensive review to gather all the pertinent scientific knowledge was found in the literature. Therefore, the aim of this study was to critically assess the information furnished by peer-reviewed articles regarding the walnut septum chemical composition and the related biological activities, including antioxidant activities, anti-inflammatory effects, antimicrobial properties, antidiabetic activities, anti-tumor properties, and anti-aging potential. In conclusion, as these preclinical studies showed that walnut septum metabolites were responsible for a wide range of preventive and therapeutic uses, further research should confirm the beneficial outcomes in clinical trials.
Collapse
Affiliation(s)
- Letiția Mateș
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-450-555
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Efficacy of Lazolex® Gel in the Treatment of Herpes Simplex Mucocutaneous Infections and the Prevention of Recurrences: A Pilot Study. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:4413679. [DOI: 10.1155/2022/4413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Background. Previous in vitro and in vivo studies indicated that walnut extract has a therapeutic effect on herpes simplex infections. This study aimed to evaluate the efficacy and tolerance of Lazolex® Gel (Iveriapharma, Tbilisi, Georgia), an emollient gel to treat mucocutaneous lesions caused by herpes simplex virus. Methods. A single-center, single-arm, open-label, phase II clinical trial was conducted with 30 patients divided into two groups: 15 patients with herpes simplex virus type 1 (HSV-1) infections and 15 with herpes simplex virus type 2 (HSV-2). All received topical treatment with Lazolex® Gel four times a day for 10 days. The efficacy and tolerance of the treatment were evaluated on day 10 and day 20 of the study. Recurrence rates were also evaluated both prior to treatment with Lazolex® and over a 4-year follow-up period subsequent to treatment. Results. The median effective time to resolution of symptoms (itching, burning, and pain) was 1.97 days in the HSV-1 group and 3.11 days in the HSV-2 group. The median effective time for vesicles and erosion to disappear was 3.64 days in the HSV-1 group and 3.88 days for the HSV-2 group. Finally, the median effective time for inflammatory signs to disappear was 5.70 and 4.32 days, respectively. Following treatment with Lazolex® Gel, the frequency of outbreaks decreased from a median of 2.00 and 1.00 times per year in the HSV-1 and HSV-2 cohorts to 0.25 and 0.00 (
and
), respectively. Conclusions. Topical treatment with Lazolex® Gel applied to lesions four times a day for 10 days was shown to be effective and safe in the treatment of herpes simplex mucocutaneous infections and dramatically reduced the rate of recurrence. Clinical trial was approved by Drug Agency of Ministry of Labour, Health and Social Affairs of Georgia, registration # DA Nº CT-000032, date of approval 01.10.2007.
Collapse
|
11
|
Bujdosó G, Lengyel-Kónya É, Berki M, Végh A, Fodor A, Adányi N. Effects of Phenolic Compounds on Walnut Bacterial Blight in the Green Husk of Hungarian-Bred Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:2996. [PMID: 36365449 PMCID: PMC9657124 DOI: 10.3390/plants11212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The Persian walnut (Juglans regia L.) is the most grown nut tree crop in Central Europe. The aim was to study the full Hungarian walnut assortment with a distinct early spring phenology to detect the difference in phenolic profile in their green husks. Furthermore, the relationship between the presence and concentration of phenolic compounds and the tolerance/resistance of the observed cultivars to walnut bacterial blight was investigated. Examining the samples, significant differences were found between the concentrations of the different groups of phenolic compounds. Walnut blight immunity tests were also performed to clarify the role of phenolic compounds in the nut derived from a non-irrigated orchard. The Hungarian-bred local cultivars contained phenolic compounds in higher concentrations than the domesticated ones. There was a significant correlation between the budburst, as well as the pistillate flowers' receptivity and the concentration of juglone. Cultivars with a low concentration of phenolic compounds were the most susceptible to walnut bacterial blight, except 'Bonifác'.
Collapse
Affiliation(s)
- Géza Bujdosó
- Research Centre for Fruit Growing, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary
| | - Éva Lengyel-Kónya
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Mária Berki
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Anita Végh
- Institute of Plant Protection, Buda Campus, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Attila Fodor
- Institute of Plant Protection, Buda Campus, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
12
|
Wang M, Wu W, Xiao J, Li C, Chen B, Shen Y. Recent Development in Antioxidant Peptides of Woody Oil Plant By-Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Min Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Wenrui Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Potential of solid wastes from the walnut industry: Extraction conditions to evaluate the antioxidant and bioherbicidal activities. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|