1
|
Chang P, Guo K, Li S, Wang H, Tang M. In Situ Sodium Chloride Cross-Linked Fish Skin Collagen Scaffolds for Functional Hemostasis Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2208001. [PMID: 37936312 DOI: 10.1002/smll.202208001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Current fish collagen hemostasis for wound healing products is commonly obtained by electrospinning or artificial cross-linking fish collagen fibers which lacks mechanical properties, and biofunctions. Here, a new bio-active fish skin scaffold (FSS) is shown using in situ cross-linked scaleless freshwater fish skin adding adipose-derived stem cells (ASCs)-produced exosomes for hemostasis and wound healing. The structure, pore size, and the thickness of FSS is studied by swelling test, Fourier-transform infrared (FT-IR) spectra, scanning electron microscope (SEM) images, and histological analysis. The biofunctions of the FSS are also tested in vitro and in vivo. FSS keeps two functional layers: The dermis layer collagen forms a sponge like structure after swelling and in situ cross-linking treatments. The pore size of the FSS is ≈152 ± 23.54 µm, which is suitable for cells growing, angiogenesis and ASCs exosomes accelerate wound healing. The fat-rich epidermis layer can keep the wound moisty and clean before completely healed. In vitro and in vivo experimental results indicate that FSS+Exosomes enhances rat skin cavity wound healing. In situ sodium chloride cross-linked FSS+Exosomes provides a new strategy as functional hemostatic dressing scaffold for wound healing.
Collapse
Affiliation(s)
- Peng Chang
- Department of Plastic and Cosmetic Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kai Guo
- Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, Liaoning, 110000, China
| | - Shijie Li
- Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, Liaoning, 110000, China
| | - Hongtao Wang
- Shenyang Elite Blue Medical Technology (EBG) Co., Ltd., Shenyang, 110004, China
| | - Mingqiang Tang
- Shenyang Elite Blue Medical Technology (EBG) Co., Ltd., Shenyang, 110004, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
2
|
Da Cunha MR, Maia FLM, Iatecola A, Massimino LC, Plepis AMDG, Martins VDCA, Da Rocha DN, Mariano ED, Hirata MC, Ferreira JRM, Teixeira ML, Buchaim DV, Buchaim RL, De Oliveira BEG, Pelegrine AA. In Vivo Evaluation of Collagen and Chitosan Scaffold, Associated or Not with Stem Cells, in Bone Repair. J Funct Biomater 2023; 14:357. [PMID: 37504852 PMCID: PMC10381363 DOI: 10.3390/jfb14070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Natural polymers are increasingly being used in tissue engineering due to their ability to mimic the extracellular matrix and to act as a scaffold for cell growth, as well as their possible combination with other osteogenic factors, such as mesenchymal stem cells (MSCs) derived from dental pulp, in an attempt to enhance bone regeneration during the healing of a bone defect. Therefore, the aim of this study was to analyze the repair of mandibular defects filled with a new collagen/chitosan scaffold, seeded or not with MSCs derived from dental pulp. Twenty-eight rats were submitted to surgery for creation of a defect in the right mandibular ramus and divided into the following groups: G1 (control group; mandibular defect with clot); G2 (defect filled with dental pulp mesenchymal stem cells-DPSCs); G3 (defect filled with collagen/chitosan scaffold); and G4 (collagen/chitosan scaffold seeded with DPSCs). The analysis of the scaffold microstructure showed a homogenous material with an adequate percentage of porosity. Macroscopic and radiological examination of the defect area after 6 weeks post-surgery revealed the absence of complete repair, as well as absence of signs of infection, which could indicate rejection of the implants. Histomorphometric analysis of the mandibular defect area showed that bone formation occurred in a centripetal fashion, starting from the borders and progressing towards the center of the defect in all groups. Lower bone formation was observed in G1 when compared to the other groups and G2 exhibited greater osteoregenerative capacity, followed by G4 and G3. In conclusion, the scaffold used showed osteoconductivity, no foreign body reaction, malleability and ease of manipulation, but did not obtain promising results for association with DPSCs.
Collapse
Affiliation(s)
- Marcelo Rodrigues Da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil
| | | | - Amilton Iatecola
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Lívia Contini Massimino
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), São Carlos 13566-590, Brazil
| | | | | | | | | | | | | | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | | |
Collapse
|
3
|
Ma L, Fu L, Gu C, Wang H, Yu Z, Gao X, Zhao D, Ge B, Zhang N. Delivery of bone morphogenetic protein-2 by crosslinking heparin to nile tilapia skin collagen for promotion of rat calvaria bone defect repair. Prog Biomater 2022; 12:61-73. [PMID: 36495399 PMCID: PMC9958213 DOI: 10.1007/s40204-022-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Collagen has been widely used as a biomaterial for tissue regeneration. At the present, aqua-collagen derived from fish is poorly explored for biomedical material applications due to its insufficient thermal stability. To improve the bone repair ability and thermal stability of fish collagen, the tilapia skin collagen was crosslinked by EDC/NHS with heparin to bind specifically to BMP-2. The thermal stability of tilapia skin collagen crosslinked with heparin (HC-COL) was detected by differential scanning calorimetry (DSC). Cytotoxicity of HC-COL was assessed by detecting MC3T3-E1 cell proliferation using CCK-8 assay. The specific binding of BMP-2 to HC-COL was tested and the bioactivity of BMP-2-loaded HC-COL (HC-COL-BMP-2) was evaluated in vitro by inducing MC3T3-E1 cell differentiation. In vivo, the bone repair ability of HC-COL-2 was evaluated using micro-CT and histological observation. After crosslinking by EDC/NHS, the heparin-linked and the thermostability of the collagen of Nile Tilapia were improved simultaneously. HC-COL has no cytotoxicity. In addition, the binding of BMP-2 to HC-COL was significantly increased. Furthermore, the in vitro study revealed the effective bioactivity of BMP-2 binding on HC-COL by inducing MC3T3-E1 cells with higher ALP activity and the formation of mineralized nodules. In vivo studies showed that more mineralized and mature bone formation was achieved in HC-COL-BMP-2 group. The prepared HC-COL was an effective BMP-2 binding carrier with enough thermal stability and could be a useful biomaterial for bone repair.
Collapse
Affiliation(s)
- Lina Ma
- grid.440653.00000 0000 9588 091XDepartment of Diagnostics, The Second School of Medicine, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China ,grid.440653.00000 0000 9588 091XRongxiang Xu Regenerative Medicine Research Center, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Li Fu
- grid.440653.00000 0000 9588 091XRongxiang Xu Regenerative Medicine Research Center, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China ,grid.440653.00000 0000 9588 091XDepartment of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Chengxu Gu
- grid.440653.00000 0000 9588 091XDepartment of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Haonan Wang
- grid.497420.c0000 0004 1798 1132State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People’s Republic of China
| | - Zhenghai Yu
- grid.440653.00000 0000 9588 091XDepartment of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Xiuwei Gao
- Shandong Junxiu Biotechnology Co. LTD, 32 Zhujiang Road, Economic and Technological Development Zone, Yantai, 264006 Shandong China
| | - Dongmei Zhao
- Department of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003, Shandong, China.
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Naili Zhang
- Rongxiang Xu Regenerative Medicine Research Center, Binzhou Medical University, Laishan, Yantai, 264003, Shandong, China. .,Department of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003, Shandong, China.
| |
Collapse
|
4
|
Milan E, Bertolo MRV, Martins VCA, Sobrero CE, Plepis AMG, Fuhrmann-Lieker T, Horn MM. Effects of Mangosteen Peel Phenolic Compounds on Tilapia Skin Collagen-Based Mineralized Scaffold Properties. ACS OMEGA 2022; 7:34022-34033. [PMID: 36188292 PMCID: PMC9520718 DOI: 10.1021/acsomega.2c03266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
A proper valorization of biological waste sources for an effective conversion into composites for tissue engineering is discussed in this study. Hence, the collagen and the phenolic compound applied in this investigation were extracted from waste sources, respectively, fish industry rejects and the peels of the mangosteen fruit. Porous scaffolds were prepared by combining both components at different compositions and mineralized at different temperatures to evaluate the modifications in the biomimetic formation of apatite. The inclusion of mangosteen extract showed the advantage of increasing the collagen denaturation temperature, improving the stability of its triple helix. Moreover, the extract provided antioxidant activity due to its phenolic composition, as confirmed by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assays. Mineralization was successfully achieved as indicated by thermogravimetry and scanning electron microscopy. A higher temperature and a lower extract concentration reduced the calcium phosphate deposits. The extract also affected the pore size, particularly at a lower concentration. The X-ray diffraction pattern identified a low degree of crystallization. A high mineralization temperature induced the formation of smaller crystallites ranging from 18.9 to 25.4 nm. Although the deposited hydroxyapatite showed low crystallinity, the scaffolds are suitable for bone tissue applications and may be effective in controlling the resorbability rate in tissue regeneration.
Collapse
Affiliation(s)
- Eduardo
P. Milan
- Interunits
Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil
- Physical
Chemistry of Nanomaterials, Institute of Chemistry and Center for
Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel 34132, Germany
| | - Mirella R. V. Bertolo
- São
Carlos Institute of Chemistry, University
of São Paulo (USP), São
Carlos 13566-590, Brazil
| | - Virginia C. A. Martins
- São
Carlos Institute of Chemistry, University
of São Paulo (USP), São
Carlos 13566-590, Brazil
| | | | - Ana M. G. Plepis
- Interunits
Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo (USP), São
Carlos 13566-590, Brazil
| | - Thomas Fuhrmann-Lieker
- Physical
Chemistry of Nanomaterials, Institute of Chemistry and Center for
Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel 34132, Germany
| | - Marilia M. Horn
- Physical
Chemistry of Nanomaterials, Institute of Chemistry and Center for
Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel 34132, Germany
| |
Collapse
|
5
|
Milan EP, Martins VC, Horn MM, Plepis AM. Influence of blend ratio and mangosteen extract in chitosan/collagen gels and scaffolds: Rheological and release studies. Carbohydr Polym 2022; 292:119647. [DOI: 10.1016/j.carbpol.2022.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
6
|
Silva SK, Plepis AMG, Martins VDCA, Horn MM, Buchaim DV, Buchaim RL, Pelegrine AA, Silva VR, Kudo MHM, Fernandes JFR, Nazari FM, da Cunha MR. Suitability of Chitosan Scaffolds with Carbon Nanotubes for Bone Defects Treated with Photobiomodulation. Int J Mol Sci 2022; 23:ijms23126503. [PMID: 35742948 PMCID: PMC9223695 DOI: 10.3390/ijms23126503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Biomaterials have been investigated as an alternative for the treatment of bone defects, such as chitosan/carbon nanotubes scaffolds, which allow cell proliferation. However, bone regeneration can be accelerated by electrotherapeutic resources that act on bone metabolism, such as low-level laser therapy (LLLT). Thus, this study evaluated the regeneration of bone lesions grafted with chitosan/carbon nanotubes scaffolds and associated with LLLT. For this, a defect (3 mm) was created in the femur of thirty rats, which were divided into 6 groups: Control (G1/Control), LLLT (G2/Laser), Chitosan/Carbon Nanotubes (G3/C+CNTs), Chitosan/Carbon Nanotubes with LLLT (G4/C+CNTs+L), Mineralized Chitosan/Carbon Nanotubes (G5/C+CNTsM) and Mineralized Chitosan/Carbon Nanotubes with LLLT (G6/C+CNTsM+L). After 5 weeks, the biocompatibility of the chitosan/carbon nanotubes scaffolds was observed, with the absence of inflammatory infiltrates and fibrotic tissue. Bone neoformation was denser, thicker and voluminous in G6/C+CNTsM+L. Histomorphometric analyses showed that the relative percentage and standard deviations (mean ± SD) of new bone formation in groups G1 to G6 were 59.93 ± 3.04a (G1/Control), 70.83 ± 1.21b (G2/Laser), 70.09 ± 4.31b (G3/C+CNTs), 81.6 ± 5.74c (G4/C+CNTs+L), 81.4 ± 4.57c (G5/C+CNTsM) and 91.3 ± 4.81d (G6/C+CNTsM+L), respectively, with G6 showing a significant difference in relation to the other groups (a ≠ b ≠ c ≠ d; p < 0.05). Immunohistochemistry also revealed good expression of osteocalcin (OC), osteopontin (OP) and vascular endothelial growth factor (VEGF). It was concluded that chitosan-based carbon nanotube materials combined with LLLT effectively stimulated the bone healing process.
Collapse
Affiliation(s)
- Samantha Ketelyn Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Ana Maria Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
| | | | - Marilia Marta Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary and Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | | | - Vinícius Rodrigues Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Mateus Hissashi Matsumoto Kudo
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - José Francisco Rebello Fernandes
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Fabricio Montenegro Nazari
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Correspondence: ; Tel.: +55-11-3395-2100
| |
Collapse
|
7
|
A bioactive porous scaffold containing collagen/ phosphorous-modified polycaprolactone for osteogenesis of adipose-derived mesenchymal stem cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Kh. Kara G, Tadjarodi A, Kehtari M. Designing a novel 3D nanofibrous scaffold based on nanoalloy AuAg NPs (AuAg@ PAN NFs) for osteogenic differentiation of human adipose derived mesenchymal stem cells (hADMSCs). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|