1
|
Wang Q, Li D, Liu L, Shan Y, Bao Y. Dietary isothiocyanates and anticancer agents: exploring synergism for improved cancer management. Front Nutr 2024; 11:1386083. [PMID: 38919393 PMCID: PMC11196812 DOI: 10.3389/fnut.2024.1386083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Human studies have shown the anticancer effects of dietary isothiocyanates (ITCs), but there are some inconsistencies, and more evidence supports that such anticancer effect is from higher doses of ITCs. The inconsistencies found in epidemiological studies may be due to many factors, including the biphasic dose-response (so called hormetic effect) of ITCs, which was found to be more profound under hypoxia conditions. In this comprehensive review, we aim to shed light on the intriguing synergistic interactions between dietary ITCs, focusing on sulforaphane (SFN) and various anticancer drugs. Our exploration is motivated by the potential of these combinations to enhance cancer management strategies. While the anticancer properties of ITCs have been recognized, our review delves deeper into understanding the mechanisms and emphasizing the significance of the hormetic effect of ITCs, characterized by lower doses stimulating both normal cells and cancer cells, whereas higher doses are toxic to cancer cells and inhibit their growth. We have examined a spectrum of studies unraveling the multifaceted interaction and combinational effects of ITCs with anticancer agents. Our analysis reveals the potential of these synergies to augment therapeutic efficacy, mitigate chemoresistance, and minimize toxic effects, thereby opening avenues for therapeutic innovation. The review will provide insights into the underlying mechanisms of action, for example, by spotlighting the pivotal role of Nrf2 and antioxidant enzymes in prevention. Finally, we glimpse ongoing research endeavors and contemplate future directions in this dynamic field. We believe that our work contributes valuable perspectives on nutrition and cancer and holds promise for developing novel and optimized therapeutic strategies.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China
| | - Lihua Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
2
|
Allani M, Akhilesh, Tiwari V. Caspase-driven cancer therapies: Navigating the bridge between lab discoveries and clinical applications. Cell Biochem Funct 2024; 42:e3944. [PMID: 38348642 DOI: 10.1002/cbf.3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Apoptosis is the cell's natural intrinsic regulatory mechanism of normal cells for programmed cell death, which plays an important role in cancer as a classical mechanism of tumor cell death causing minimal inflammation without causing damage to other cells in the vicinity. Induction of apoptosis by activation of caspases is one of the primary targets for cancer treatment. Over the years, a diverse range of natural, synthetic, and semisynthetic compounds and their derivatives have been investigated for their caspase-mediated apoptosis-induced anticancer activities. The review aims to compile the preclinical evidence and highlight the critical mechanistic pathways related to caspase-induced cell apoptosis in cancer treatment. The focus is placed on the key components of the mechanisms, including their chemical nature, and specific attention is given to phytochemicals derived from natural sources and synthetic and semisynthetic compounds. 180+ compounds from the past two decades with potential as anticancer agents are discussed in this review article. By summarizing the current knowledge and advancements in this field, this review provides a comprehensive overview of potential therapeutic strategies targeting apoptosis in cancer cells. The findings presented herein contribute to the ongoing efforts to combat cancer and stimulate further research into the development of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Kregielewski K, Fraczek W, Grodzik M. Graphene Oxide Enhanced Cisplatin Cytotoxic Effect in Glioblastoma and Cervical Cancer. Molecules 2023; 28:6253. [PMID: 37687081 PMCID: PMC10489016 DOI: 10.3390/molecules28176253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Graphene oxide (GO) is an oxidized derivative of graphene. So far, GO has mostly been studied as a drug delivery method rather than a standalone drug for treating cancers like glioblastoma or cervical cancer. However, we propose a promising new approach-using GO as a sensitizer for cisplatin chemotherapy. Here, we analyze the effects of triple GO pretreatment, followed by cisplatin treatment, on cancerous cell lines U87 and HeLa, as well as the noncancerous cell line HS-5, through morphology analysis, viability assay, flow cytometry, and LDH release assay. The viability assay results showed that GO treatment made U87 and HeLa cells more responsive to cisplatin, leading to a significant reduction in cell viability to 40% and 72%, respectively, without affecting HS-5 cells viability, while the Annexin V/Propidium iodine assay showed that GO pretreatment did not cause a change in live cells in all three examined cell lines, while GO-pretreated HeLa cells treated with cisplatin showed significant decrease around two times compared to cells treated with cisplatin standalone. The U87 cell line showed a significant increase in LDH release, approximately 2.5 times higher than non-GO-pretreated cells. However, GO pretreatment did not result in LDH release in noncancerous HS-5 cells. It appears that this phenomenon underlays GO's ability to puncture the cell membrane of cancerous cells depending on its surface properties without harming noncancerous cells.
Collapse
Affiliation(s)
- Kacper Kregielewski
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
4
|
Susan M, Macasoi I, Pinzaru I, Dehelean C, Ilia I, Susan R, Ionita I. In Vitro Assessment of the Synergistic Effect of Aspirin and 5-Fluorouracil in Colorectal Adenocarcinoma Cells. Curr Oncol 2023; 30:6197-6219. [PMID: 37504320 PMCID: PMC10377900 DOI: 10.3390/curroncol30070460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Although remarkable progress has been made, colorectal cancer remains a significant global health issue. One of the most challenging aspects of cancer treatment is the resistance of tumor cells to classical chemotherapy. Conventional therapy for colorectal cancer often involves the use of 5-fluorouracil as a chemotherapeutic agent. Aspirin, a drug used primarily to prevent cardiovascular complications, became a focus of attention due to its potential use as an antitumor agent. The purpose of the study was to evaluate the potential synergistic cytotoxic effects of aspirin and 5-fluorouracil on colorectal adenocarcinoma cells. The viability of cells, the impact on the morphology and nuclei of cells, the potential antimigratory effect, and the impact on the expression of the major genes associated with cell apoptosis (Bcl-2, Bax, Bad), as well as caspases 3 and 8, were evaluated. The results indicated that the two compounds exerted a synergistic effect, causing a reduction in cell viability accompanied by changes characteristic of the apoptosis process-the condensation of nuclei and the reorganization of actin filaments in cells, the reduction in the expression of the Bcl-2 gene, and the increase in the expression of Bax and Bad genes, along with caspases 3 and 8. Considering all these findings, it appears that aspirin may be investigated in depth in order to be used in conjunction with 5-fluorouracil to increase antitumor activity.
Collapse
Affiliation(s)
- Monica Susan
- Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iosif Ilia
- Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Razvan Susan
- Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Ionita
- Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Kamran S, Sinniah A, Chik Z, Alshawsh MA. Diosmetin Exerts Synergistic Effects in Combination with 5-Fluorouracil in Colorectal Cancer Cells. Biomedicines 2022; 10:biomedicines10030531. [PMID: 35327333 PMCID: PMC8945009 DOI: 10.3390/biomedicines10030531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic medication commonly used to treat colorectal cancer (CRC); however, the drug-associated adverse effects and toxicity have greatly affected its clinical use. Exploring another therapeutic strategy that lowers the toxicity of 5-FU while having a synergistic effect against CRC is thus a viable option. Diosmetin, a natural flavonoid, has been shown to inhibit the proliferation of many cancer cells, including CRC cells. This study aims to investigate the synergistic effect of diosmetin and 5-FU on HCT116 and HT29 colorectal cancer cells and to explore the apoptotic activity of this combination. The MTT assay was used to assess the viability of cells treated with monotherapy and combination therapy. The combination index (CI) and dose reduction index (DRI) were calculated using the CompuSyn software (version 1.0). The SynergyFinder 2.0 software was used to calculate the synergy score, while the Combenefit software was employed to perform isobologram analysis and synergism determination. The AO/PI double staining technique was used to detect the apoptotic characteristics of cells, whereas the flow cytometry technique was used to investigate the apoptosis induction and cell cycle arrest in cells. The combination of 5-FU and diosmetin showed a synergistic effect in HCT116 cells with a mean CI value of 0.66 ± 0.4, and an additive effect in HT29 cells with a CI value of 1.0 ± 0.2. The DRI of 5-FU in HCT116 cells was three times lower in the combination therapy compared to monotherapy of 5-FU. AO/PI microscopic examination and Annexin V analysis revealed that the combination-treated cells had more apoptotic cells than the monotherapy-treated cells, which was activated mainly through intrinsic apoptosis pathway. HCT116 cell death was confirmed by mitotic arrest in the G2/M phase. Our findings suggest that 5-FU/diosmetin combination exhibits synergistic effect against HCT116 cancer cells, and potentially reduces the unfavorable adverse effect of 5-FU while enhancing the anticancer efficacy by inducing apoptosis and interrupting mitosis. Further research studies are needed to validate the combination’s anti-tumorigenic activities in a xenograft animal model.
Collapse
|