1
|
Xu Y, Liu X, Ma M, Wang M, Hua W, Yao T, Sui Z. Structural and rheological characterization of water-soluble and alkaline-soluble fibers from hulless barley. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2897-2906. [PMID: 38018273 DOI: 10.1002/jsfa.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Highland hulless barley has garnered attention as a promising economic product and a potential healthy food ingredient. The present study aimed to comprehensively investigate the molecular structure of extractable fibers obtained from a specific highland hulless barley. Water-soluble fiber (WSF) and alkaline-soluble fiber (ASF) were extracted using enzymatic digestion and an alkaline method, respectively. The purified fibers underwent a thorough investigation for their structural characterization. RESULTS The monosaccharide composition revealed that WSF primarily consisted of glucose (91.7%), whereas ASF was composed of arabinose (54.5%) and xylose (45.5%), indicating the presence of an arabinoxylan molecule with an A/X ratio of 1.2. The refined structural information was further confirmed through methylation, 1 H NMR and Fourier-transform infrared spectroscopy analyses. WSF fiber exclusively exhibited α-anomeric patterns, suggesting it was an α-glucan. It has a low molecular weight of 5 kDa, as determined by gel permeation chromatography. Conversely, ASF was identified as a heavily branched arabinoxylan with 41.55% of '→2,3,4)-Xylp-(1→' linkages. ASF and WSF exhibited notable differences in their morphology, water absorption capabilities and rheological properties. CONCLUSION Based on these findings, molecular models of WSF and ASF were proposed. The deep characterization of these fiber structures provides valuable insights into their physicochemical and functional properties, thereby unlocking their potential applications in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoning Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Hua
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Wang J, Fan M, Li Y, Qian H, Wang L. Structural and emulsion-stabilizing properties of the alkali-extracted arabinoxylans from corn and wheat brans. Int J Biol Macromol 2023; 251:126190. [PMID: 37586632 DOI: 10.1016/j.ijbiomac.2023.126190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
This study investigated the structural and emulsion-stabilizing capacities of alkali-extracted arabinoxylans from corn and wheat bran (CAXs and WAXs). The results demonstrated that all AXs were mainly composed of arabinose and xylose. WAXs had a higher weight-average molecular weight (Mw, 375-473 KDa) and protein content (3.09-8.68 %) but lower total phenolic acid content (TPC, 1.18-1.91 mg gallic acid equivalents/g) than CAXs; however, CAX stabilized emulsions exhibited smaller and more regular oil droplet size (524-589 nm) and higher absolute value of ζ potential (48-52 mV) compared with WAX stabilized emulsions during storage. Moreover, the increment of NaOH concentration caused a decrease in Mw, protein content, and TPC of CAXs or WAXs and the corresponding CAXs or WAXs emulsions showed bigger and more unstable oil droplets during 14 d storage. The Mw, protein, and TPC were well correlated with their emulsion stability. Furthermore, emulsions stabilized by AXs with low-concentration NaOH could resist better various temperatures, pH, and NaCl. In conclusion, the structural properties of AXs derived from different cereal sources and treated with different concentrations of NaOH varied, leading to differences in their ability to stabilize emulsions. CAXs or WAXs obtained from low-concentration NaOH treatment demonstrated significant potential as highly effective natural emulsifiers.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
3
|
Mio K, Ogawa R, Tadenuma N, Aoe S. Arabinoxylan as well as β-glucan in barley promotes GLP-1 secretion by increasing short-chain fatty acids production. Biochem Biophys Rep 2022; 32:101343. [PMID: 36123993 PMCID: PMC9482107 DOI: 10.1016/j.bbrep.2022.101343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Barley is rich in soluble dietary fiber including β-glucan and arabinoxylan. Barley β-glucan is fermented by gut bacteria and, thereby contributes to an effect on intestinal bacterial composition and short-chain fatty acids (SCFAs). It also increases GLP-1 secretion via SCFAs receptor. However, few studies have focused on barley arabinoxylan. Therefore, we have investigated the effects of arabinoxylan from barley on intestinal fermentability and GLP-1 secretion. C57BL/6J mice were fed a high-fat diet containing arabinoxylan-dominant barley flour without β-glucan (bgl) and high β-glucan-containing barley flour (BF) for 12 weeks. We conducted oral glucose tolerance test (OGTT) to measure insulin and GLP-1 concentrations. The concentration of SCFAs in the cecum contents was also determined. Furthermore, we measured mRNA expression assay GLP-1 secretion using real-time PCR. The OGTT result showed that GLP-1 concentrations at 60 min were increased in mice fed bgl and BF. Acetic acid and total SCFAs concentrations in the cecum contents were increased in both the barley groups, and butyric acid was increased in the bgl group. Furthermore, the bgl and BF groups had increased Gpr43, a receptor for SCFAs, and NeuroD which is involved in L cell differentiation. These results show arabinoxylan as well as β-glucan is involved in the SCFAs-mediated increase in GLP-1 secretion upon barley consumption.
Collapse
|
4
|
An Y, Liu H, Li X, Liu J, Chen L, Jin X, Chen T, Wang W, Liu Z, Zhang M, Liu F. Carboxymethylation modification, characterization, antioxidant activity and anti-UVC ability of Sargassum fusiforme polysaccharide. Carbohydr Res 2022; 515:108555. [PMID: 35405391 DOI: 10.1016/j.carres.2022.108555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/27/2022]
Abstract
Taking the degree of substitution (DS) as the index, the carboxymethylation conditions of Sargassum fusiforme polysaccharide (SFP) were studied. According to the single factor experiment results, the optimum experimental conditions were obtained: sodium hydroxide concentration, 15% (20 mL); alkalization temperature, 50 °C; dosage of chloroacetic acid 1.5 g; etherification time, 2 h, and the Carboxymethyl Sargassum fusiforme polysaccharide (CSFP) with the highest DS (0.635) was obtained. And then, the physicochemical properties, structural information and bioactivity of SFP and CSFP were characterized. The SFP and CSFP were composed of four monosaccharides, with a small amount of protein, and their molecular weights to 780.2 kDa and 386.3 kDa respectively. The results of FTIR and NMR showed that the carboxymethyl was successfully grafted onto the C-4 and C-6 of sugar chain. The results of anti UVC experiment showed that SFP and CSFP had a certain negative effect on cell activity, and the degree of damage caused by UVC radiation was weakened, and the anti UVC performance of CSFP was better than that of SFP.
Collapse
Affiliation(s)
- Yongzhen An
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haitang Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xuexiu Li
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lin Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xin Jin
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenqian Wang
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Zhong Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fufeng Liu
- School of Biological Engineering, Tianjin University of Science & Technology, China.
| |
Collapse
|