1
|
El Safadi M, Ahmad QUA, Majeebullah M, Ali A, Al-Emam A, Antoniolli G, Shah TA, Salamatullah AM. Palliative potential of velutin against abamectin induced cardiac toxicity via regulating JAK1/STAT3, NF-κB, Nrf-2/Keap-1 signaling pathways: An insight from molecular docking. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106117. [PMID: 39477578 DOI: 10.1016/j.pestbp.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 11/07/2024]
Abstract
Abamectin (ABN) is an agricultural insecticide that is reported to damage various body organs including the heart. Velutin (VLN) is a plant-derived flavonoid that exhibits a wide range of medicinal properties. This study was planned to investigate the medicinal value of VLN against ABN induced cardiotoxicity in rats. Thirty-two male albino rats (Rattus norvegicus) were divided into four equal groups including the control, ABN (10 mg/kg), ABN (10 mg/kg) + VLN (20 mg/kg), and VLN (20 mg/kg) alone administrated group. The doses were administrated for 6 weeks orally. The results demonstrated that ABN intoxication promoted the gene expression of Nrf-2 and its associated antioxidant genes including glutathione reductase (GSR), heme‑oxygenase-1 (HO-1), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) while reducing the gene expression of Keap-1 as well as levels of ROS and MDA. Moreover, ABN exposure enhanced the gene expression of Janus kinase-1 (JAK1), Signal transducer and activator of transcription-3 (STAT3), NF-κB, TNF-α, C-reactive proteins, Interferon-gamma-induced protein 10 (IP-10), IL-1β, Monocyte chemoattractant protein-1 (MCP-1), IL-6 and COX-2. The concentrations of CK-MB, Brain natriuretic peptide (BNP), CPK, troponin-I, N-terminal pro b-type natriuretic peptide (NT-proBNP) and LDH were elevated after ABN administration. ABN intoxication abruptly upregulated the levels of Caspase-3, Caspase-9 and Bax while reducing the levels of Bcl-2 in cardiac tissues. Additionally, ABN exposure prompted various histopathological damages. Nevertheless, VLN treatment remarkably protected the cardiac tissues via regulating aforementioned disruptions. Lastly, molecular docking analysis was performed to determine the potential affinity of VLN and targeted protein i.e., Bax, NF-kB, Nrf-2/Keap1, JAK1 and STAT3. Our in-silico evaluation showed a strong binding affinitybetween VLN and the targeted proteins which further confirms its effectiveness as a cardioprotective agent.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Qurat-Ul-Ain Ahmad
- Department of Zoology, Division of Sciences and Technology, University of Education Township Lahore, Pakistan
| | - Muhammad Majeebullah
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Ali
- Department of Zoology, University of Education, Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| | | | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P. O. Box 2460, Riyad, 11451, Saudi Arabia
| |
Collapse
|
2
|
Fan Y, Liu C, Wang F, Li L, Guo Y, Zhou Q, Xiong L. Coumarins with Different Substituents from Leonurus japonicus Have Opposite Effects on Uterine Smooth Muscle. Int J Mol Sci 2024; 25:10162. [PMID: 39337649 PMCID: PMC11432705 DOI: 10.3390/ijms251810162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Leonurus japonicus Houtt is an exceptional medicinal herb used to treat obstetrical and gynecological diseases in traditional Chinese medicine, and it has significant effects on the treatment of dysmenorrhea and postpartum hemorrhage. This study investigated the effects of coumarins with diverse substituent groups from L. japonicus on isolated uterine smooth muscle and the preliminary mechanism of the most effective compound. Eight coumarins isolated from L. japonicus were assessed for their effects on the isolated uterine smooth muscle of nonpregnant rats in vitro. Coumarins 1 and 2 significantly promoted the contraction of rat uterine smooth muscle strips, whereas coumarins 3-5 showed remarkable relaxing effects against oxytocin (OT)-induced rat uterine smooth muscle contraction. Further mechanism investigations revealed that bergapten (coumarin 1) significantly increased the level of Ca2+ in uterine tissues by promoting extracellular Ca2+ influx and intracellular Ca2+ release, which were related to the activation of L-type Ca2+ channels and α-receptors. By contrast, osthole (coumarin 5), an α receptor antagonist, inhibited OT-induced uterine smooth muscle contraction by decreasing the level of Ca2+ in uterine tissues via inhibition of extracellular Ca2+ influx and intracellular Ca2+ release. This study demonstrates that the coumarins from L. japonicus are effective substances for regulating uterine smooth muscle contraction, but different coumarins with diverse substituent groups have different, even opposite effects. It can be inferred that coumarins are closely related to the efficacy of L. japonicus in the treatment of dysmenorrhea and postpartum hemorrhage.
Collapse
Affiliation(s)
- Yunqiu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenhao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Wang
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Lei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinmei Zhou
- Institute of Traditional Chinese Medicine Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Otaegui L, Lehoux J, Martin L, Givalois L, Durand T, Desrumaux C, Crauste C. Overview of alkyl quercetin lipophenol synthesis and its protective effect against carbonyl stress involved in neurodegeneration. Org Biomol Chem 2024; 22:2877-2890. [PMID: 38525805 DOI: 10.1039/d4ob00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Oxidative stress and carbonyl stress resulting from the toxicity of small aldehydes are part of the detrimental mechanisms leading to neuronal cell loss involved in the progression of neurodegenerative diseases such as Alzheimer's disease. Polyunsaturated alkylated lipophenols represent a new class of hybrid molecules that combine the health benefits of anti-inflammatory omega-3 fatty acids with the anti-carbonyl and oxidative stress (anti-COS) properties of (poly)phenols in a single pharmacological entity. To investigate the therapeutic potential of quercetin-3-docosahexaenoic acid-7-isopropyl lipophenol in neurodegenerative diseases, three synthetic pathways using chemical or chemo-enzymatic strategies were developed to access milligram or gram scale quantities of this alkyl lipophenol. The protective effect of quercetin-3-DHA-7-iPr against cytotoxic concentrations of acrolein (a carbonyl stressor) was assessed in human SHSY-5Y neuroblastoma cells to underscore its ability to alleviate harmful mechanisms associated with carbonyl stress in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Léa Otaegui
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
| | - Jordan Lehoux
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
| | - Leo Martin
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
| | - Laurent Givalois
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
- Laval University, Department of Neurosciences & Psychiatry, Quebec, Canada
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
| | - Catherine Desrumaux
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
- LIPSTIC LabEx, 21000 Dijon, France
| | - Céline Crauste
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
| |
Collapse
|
4
|
Yang J, Lee SY, Jang SK, Kim KJ, Park MJ. Inhibition of Melanogenesis by Essential Oils from the Citrus Cultivars Peels. Int J Mol Sci 2023; 24:ijms24044207. [PMID: 36835634 PMCID: PMC9962211 DOI: 10.3390/ijms24044207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Citrus is one of the most popular and widely grown fruit crops in the world. However, the bioactivity of only certain species of citrus cultivars is studied. In this study, the effects of essential oils from 21 citrus cultivars on melanogenesis were investigated in an effort to identify active anti-melanogenesis constituents. The essential oils from the peels of 21 citrus cultivars obtained by hydro-distillation were analyzed using gas chromatography-mass spectrometry. Mouse melanoma B16BL6 cells were used in all assays conducted in this study. The tyrosinase activity and melanin content were determined using the lysate of α-Melanocyte-stimulated B16BL6 cells. In addition, the melanogenic gene expression was determined by quantitative reverse transcription-polymerase chain reaction. Overall, the essential oils of (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulata provided the best bioactivity and comprised five distinct constituents compared to other essential oils such as limonene, farnesene, β-elemene, terpinen-4-ol, and sabinene. The anti-melanogenesis activities of the five individual compounds were evaluated. Among the five essential oils, β-elemene, farnesene, and limonene showed dominating properties. The experimental results indicated that (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulara are potential candidates with anti-melanogenesis activity for use as cosmetics and pharmaceutical agents against skin hyperpigmentation.
Collapse
Affiliation(s)
- Jiyoon Yang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Su-Yeon Lee
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Soo-Kyeong Jang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Ki-Joong Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Jin Park
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
- Correspondence: ; Tel.: +82-2-961-2751; Fax: +82-2-961-2769
| |
Collapse
|
5
|
Zhou BB, Liu D, Qian JC, Tan RX. Vegetable-derived indole enhances the melanoma-treating efficacy of chemotherapeutics. Phytother Res 2022; 36:4278-4292. [PMID: 35883268 DOI: 10.1002/ptr.7565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Food-drug interaction is an important but overlooked issue. For example, little is known concerning whether or not the chemotherapy of cancers is affected by the well-defined dietary chemicals such as 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) derived from daily consumed cruciferous vegetables. This work, inspired by the described melanogenesis reduction by certain indoles, presents that LTr1 mitigates the melanogenesis and thus potentiates the in vitro and in vivo anti-melanoma effectiveness of different chemotherapeutic agents including dacarbazine, vemurafenib, and sorafenib. In B16 melanoma cells, LTr1 was shown to inhibit the melanogenesis by acting towards the regulatory (R) subunit of protein kinase A (PRKAR1a) associated with the phosphorylation of cAMP-response element binding protein (CREB). This allows LTr1 to reduce the expression of melanogenesis-related enzymes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2). Furthermore, LTr1 was addressed to bind to the aryl hydrocarbon receptor (AhR) and up-regulate the expression of CYP1A1 encoding cytochrome P450 1A1, leading to the escalation of reactive oxygen species (ROS) level. The increased ROS generation promotes the cysteine-to-cystine transformation to inhibit the pheomelanogenesis in melanomas. Collectively, the work identifies LTr1 as a new melanogenesis inhibitor that modulates the PKA/CREB/MITF and AhR/CYP1A1/ROS pathways, thereby providing a new option for (re)sensitizing melanomas to chemotherapeutics.
Collapse
Affiliation(s)
- Bei Bei Zhou
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Cheng Qian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Chemical Composition of Leaves, Stem, and Roots of Peperomia pellucida (L.) Kunth. Molecules 2022; 27:molecules27061847. [PMID: 35335210 PMCID: PMC8950162 DOI: 10.3390/molecules27061847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Peperomia pellucida is a species known in the Amazon as “erva-de-jabuti” that has been used in several therapeutic applications based on folk medicine. Herein, we describe the classes, subclasses, and the main compounds of the leaves, stems, and roots from P. pellucida by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry associated with molecular networks, mirror plot on the GNPS library, and machine learning. These data show compounds that were annotated for the first time in the Peperomia genus, such as 2′,4′,5′-trihydroxybutyrophenonevelutin, dehydroretrofractamide C, and retrofractamide B.
Collapse
|