1
|
Miao X, Zhang R, Jiang S, Song Z, Du M, Liu A. Volatile flavor profiles of douchis from different origins and varieties based on GC-IMS and GC-O-QTOF/MS analysis. Food Chem 2024; 460:140717. [PMID: 39121761 DOI: 10.1016/j.foodchem.2024.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The present study comprehensively characterized the flavor differences between different varieties of douchis from different origins using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) coupled with gas chromatography-olfactometry-quadrupole time-of-flight mass spectrometry (GC-O-QTOF/MS). A total of 91 volatile organic compounds (VOCs) were identified using HS-GC-IMS and 70 VOCs were identified using GC-O-QTOF/MS, mainly including acids, aldehydes, esters and alcohols. Additionally, 23 key aroma-presenting compounds were screened in five douchi species using relative odor activity value (ROAV) and the aroma compounds that contributed the most to the aroma varied among the five douchi species. Comparative analysis of the GC-IMS and GC-O-QTOF/ MS results yielded 13 VOCs that were detected by both techniques. Nonanal, hexanal, eucalyptol, 1-octen-3-ol, isoamyl acetate, and 2-pentylfuran were identified as key VOCs in the douchi species using both methods. These findings will provide deeper insights for exploring flavor differences in douchi from different geographic sources.
Collapse
Affiliation(s)
- Xiaoqing Miao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Rui Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiyuan Song
- College of Food Science and Engineering, Dalian Ocean University, Liaoning, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Aidong Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
2
|
Zhang J, Han Z, Chen H, Wang S, Sun J, Zhang N, Zhang H. Characterization and correlations of dominant microorganisms and volatile compounds in fermentation process of Yangjiang douchi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7397-7407. [PMID: 38716684 DOI: 10.1002/jsfa.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Yangjiang douchi (YD) is a traditional fermented soybean product, which is popular in Chinese cuisine for its unique flavor. However, due to its high salt content and unstable flavor, its competitiveness in the international market is gradually weakening. Microorganisms have a key role in the production process of YD because it is a fermented food but the effect of microorganisms on the volatile compounds of YD is also not currently clear. RESULTS In this paper, aroma compounds and microbial diversity in different fermentation stages of YD were analyzed using gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and IlluminaMiseq system sequencing. A total of 78 aroma-active compounds were detected throughout the fermentation process and they influenced the formation of flavor in YD. Fungi flora were relatively single in YD, and bacteria were rich and varied. A total of 418 species of bacteria were present during fermentation, with unclassified_Staphylococcus, Staphylococcus_kloosii, and Bacillus_velezensis_Bacillus predominating. There were 25 species of fungi at the species level, and Aspergillus minisclerotigenes (OTU 4) played a dominant role in the whole fermentation process. CONCLUSION Staphylococcus and Bacillus in the bacterial genus were strongly correlated with most flavor compounds detected, and A. minisclerotigenes in the fungi were more relevant to flavor compounds. This research provides a theoretical basis for the enhancement of the flavor of traditional fermented douchi in China. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
- Beijing Technology and Business University, School of Light Industry, Beijing, China
| | - Zhuoxuan Han
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
- Beijing Technology and Business University, School of Light Industry, Beijing, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
- Beijing Technology and Business University, School of Light Industry, Beijing, China
| | - Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
- Beijing Technology and Business University, School of Light Industry, Beijing, China
| | - Jie Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
- Beijing Technology and Business University, School of Light Industry, Beijing, China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
- Beijing Technology and Business University, School of Light Industry, Beijing, China
| | - Huiying Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
- Beijing Technology and Business University, School of Light Industry, Beijing, China
| |
Collapse
|
3
|
Huang X, Li Y, Zhou F, Xiao T, Shang B, Niu L, Huang J, Liu Z, Wang K, Zhu M. Insight into the chemical compositions of Anhua dark teas derived from identical tea materials: A multi-omics, electronic sensory, and microbial sequencing analysis. Food Chem 2024; 441:138367. [PMID: 38199099 DOI: 10.1016/j.foodchem.2024.138367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Anhua dark teas (DTs), including Tianjian tea, Qianliang tea, Hei brick tea, and Fu brick tea, are unique fermented teas from China's Anhua County; yet their chemical composition differences remain unclear. Herein, metabolomics, volatolomics, and electronic sensory assessments were employed to analyze and compare chemical compositions and sensory characteristics of five types of Anhua DTs. All of these teas were derived from identical tea materials. Chemical compositions differed significantly among Anhua DTs, with Tianjian tea remarkable. Long-lasting fermentation and complex processing methods led to transformation of multiple compounds, particularly catechins. Eighteen volatile compounds with OVA > 1 were key aroma contributors in Anhua DTs. Internal transcribed spacer and 16S ribosomal DNA sequencing showed that Eurotium, Pseudomonas, and Bacillus are dominant microorganisms in Anhua DTs. Furthermore, this study unveiled notable differences in chemical compositions between Anhua DTs and five other traditional types of tea. This research enhances our understanding of Anhua DTs processing.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Fang Zhou
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China.
| | - Tian Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Bohao Shang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Li Niu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Li A, Feng X, Yang G, Peng X, Du M, Song J, Kan J. Impact of aroma-enhancing microorganisms on aroma attributes of industrial Douchi: An integrated analysis using E-nose, GC-IMS, GC-MS, and descriptive sensory evaluation. Food Res Int 2024; 182:114181. [PMID: 38519190 DOI: 10.1016/j.foodres.2024.114181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
In order to enhance the aromatic profile of industrial Douchi, a comprehensive investigation was undertaken to assess the impact of aroma-enhancing microorganisms on the sensory attributes of Douchi. This evaluation utilized a combination of analytical techniques, including electronic nose analysis, gas chromatography-ion mobility spectrometry (GC-IMS), gas chromatography-mass spectrometry (GC-MS), and descriptive sensory analysis (DA). Both GC-IMS and GC-MS revealed significant changes in the volatile composition of Douchi following the addition of aroma-enhancing microorganisms (p < 0.05). Partial least squares-discriminant analysis (PLS-DA) identified benzaldehyde, benzene acetaldehyde, 3-octanone, and ethyl 2-methylbutyrate as significant differentiating volatile compounds. Additionally, compared to the control group, the sensory attributes of sourness in Douchi were significantly reduced (p < 0.001), while the attributes of wine-like and sweetness were notably enhanced (p < 0.05) when the ratio of G. candidum to C. versatilis was 1:1 (GCC group). By calculating the odor-activity values (OAVs) of key volatiles, it can be hypothesized that this aroma improvement of Douchi may be attributed to an increase in the typical volatiles (3-methyl-1-butanol, 1-octen-3-ol, 3-octanol, and 3-octanone) and ethyl 2-methylbutanoate with high OAVs (2340849.64 ∼ 16695327.86), as well as to decreases in the musty acetophenone. In conclusion, the aroma profile of Douchi was significantly enhanced when G. candidum and C. versatilis were added at a ratio of 1:1. This study provides valuable insights into the development of aroma enhancers for improving the sensory profile of Douchi.
Collapse
Affiliation(s)
- Aijun Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xiya Feng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xiaowei Peng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jun Song
- Shu Xiang Douchi Food Research Institute Limited Company, Chongqing 402160, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Wu Z, Chao J, Tang H, Liu T, Jiang L, Liu Y. Characterization of key aroma-active compounds in different types of Douchi based on molecular sensory science approaches. Food Chem X 2024; 21:101170. [PMID: 38357375 PMCID: PMC10865218 DOI: 10.1016/j.fochx.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
To attain the differences in the flavor profile of Douchi, the key aroma-active compounds of three types of Douchi were investigated. The "Sauce-like", "Smoky", "Nutty", "Roast", "Caramel", and "Flower" of Douchi were favored by customers. Further, a total of 179 volatile compounds were identified using HS-SPME-GC-MS, and 29 aroma compounds were detected using GC-O-MS. Based on the quantification, 9, 13, and 10 compounds were regarded as aroma-active compounds in Yangjiang Douchi (YJ), Pingjiang Douchi (PJ), and Liuyang Douchi (LY), respectively. Moreover, the mixture of these aroma-active compounds successfully simulated the main aromas of PJ, LY, and YJ. And omission experiments confirmed that guaiacol was the key aroma compound for LY, benzene acetaldehyde, dimethyl trisulfide, and 2-acetyl pyrrole were important for YJ, benzene acetaldehyde and 3,5-diethyl-2-methyl pyrazine notably contributed to key aroma of PJ.
Collapse
Affiliation(s)
- Ziqian Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Jin Chao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Hunan Tea Group Corporation Limited, Changsha 410128, China
| | - Hui Tang
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, Shaoguan, Guangdong 512005, China
| | - Tengxia Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, Shaoguan, Guangdong 512005, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| |
Collapse
|
6
|
Ritter SW, Ensslin S, Gastl MI, Becker TM. Identification of key aroma compounds of faba beans (Vicia faba) and their development during germination - a SENSOMICS approach. Food Chem 2024; 435:137610. [PMID: 37806201 DOI: 10.1016/j.foodchem.2023.137610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Faba beans are a promising source of valuable plant protein. However, their aroma impression is often a hindrance for the use in a broad range of food products. To develop mitigation strategies, a deeper insight into the faba bean aroma is required. Therefore, for the first time, the SENSOMICS concept was applied. First, 52 aroma active compounds in raw and malted faba beans were identified and semi-quantitatively preselected by aroma extract dilution analysis. Afterwards, the aroma compounds were quantified, odor activity values were calculated, and the 17 prominent odors were selected and used in the reconstitution of the faba bean aroma. Seven statistically significant key aroma compounds 3-methylbutanoic acid, (E)-non-2-enal, hexanal, methional, 3-methylbutanal, sotolon, and 2-methylbutan-1-ol were identified in omission experiments. Finally, their development upon malting was studied. To conclude, by knowing the key aroma compounds, specific mitigation strategies can be developed, which facilitates the broader use of faba beans.
Collapse
Affiliation(s)
- Stefan W Ritter
- Technical University Munich, Institute of Brewing and Beverage Technology, 85354 Freising, Germany.
| | - Sarah Ensslin
- Technical University Munich, Institute of Brewing and Beverage Technology, 85354 Freising, Germany
| | - Martina I Gastl
- Technical University Munich, Research Center Weihenstephan for Brewing and Food Quality, 85354 Freising, Germany.
| | - Thomas M Becker
- Technical University Munich, Institute of Brewing and Beverage Technology, 85354 Freising, Germany.
| |
Collapse
|
7
|
Xie J, Gänzle M. Microbiology of fermented soy foods in Asia: Can we learn lessons for production of plant cheese analogues? Int J Food Microbiol 2023; 407:110399. [PMID: 37716309 DOI: 10.1016/j.ijfoodmicro.2023.110399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The food industry is facing the challenge of creating innovative, nutritious, and flavored plant-based products, due to consumer's increasing demand for the health and environmental sustainability. Fermentation as a unique and effective tool plays an important role in the innovation of food products. Traditional fermented soy foods are popular in many Asian and African countries as nutritious, digestible and flavorful daily staples or condiments. They are produced by specific microorganisms with the unique fermentation process in which microorganisms convert the ingredients of whole soybean or soybean curd to flavorful and functional molecules. This review provides an overview on traditional fermented food produced from soy, including douchi, natto, tempeh, and sufu as well as stinky tofu, including the background of these products, the manufacturing process, and the microbial diversity involved in fermentation procedures as well as flavor volatiles that were identified in the final products. The contribution of microbes to the quality of these five fermented soy foods is discussed, with the comparison to the role of cheese ripening microorganisms in cheese flavor formation. This communication aims to summarize the microbiology of fermented soy foods in Asia, evoking innovative ideas for the development of new plant-based fermented foods especially plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Guo W, Xiao Y, Fu X, Long Z, Wu Y, Lin Q, Ren K, Jiang L. Identification of novel α-glucosidase and ACE inhibitory peptides from Douchi using peptidomics approach and molecular docking. Food Chem X 2023; 19:100779. [PMID: 37780236 PMCID: PMC10534093 DOI: 10.1016/j.fochx.2023.100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the effect of Douchi extract (DWE) on α-glucosidase and angiotensin-converting enzymes (ACE) were investigated, and several novel peptides with inhibitory activity against α-glucosidase and ACE were identified using peptidomics approach based on UPLC-MS/MS. The average inhibition rates of DWE on α-glucosidase and ACE were 73.75-78.10% and 4.56-27.07%, respectively. In the DWE, a total of 710 peptides were detected. Two novel peptides with potential inhibitory activity against α-glucosidase were identified using the correlation analysis, database alignment and molecular docking methods. They were DVFRAIPSEVL and DRPSINGLAGAN, with the IC50 values of 0.121 and 0.128 mg/mL, respectively. Also, four novel peptides with potential inhibitory activity against ACE were identified: PSSPFTDLWD, EEQDERQFPF, PVPVPVQQAFPF and PSSPFTDL, with IC50 values of 1.388, 0.041, 0.761 and 0.097 mg/mL, respectively. These results indicated that combining peptidomics and molecular docking is an effective alternative strategy for rapidly screening numbers of novel bioactive peptides from foods.
Collapse
Affiliation(s)
- Weidan Guo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Xiao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangjin Fu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Nutrition and Health Products Engineering Technology Research Center of Hunan Province, Changsha 410004, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China
- Hunan Provincial Key Laboratory of Special Medical Food, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhao Long
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China
- Hunan Provincial Key Laboratory of Special Medical Food, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yue Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Special Medical Food, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Nutrition and Health Products Engineering Technology Research Center of Hunan Province, Changsha 410004, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China
- Hunan Provincial Key Laboratory of Special Medical Food, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kangzi Ren
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Insights into volatile flavor compound variations and characteristic fingerprints in Longpai soy sauce moromi fermentation via HS-GC-IMS and HS-SPME-GC× GC-ToF-MS. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Li J, Peng B, Huang L, Zhong B, Yu C, Hu X, Wang W, Tu Z. Association between flavors and microbial communities of traditional Aspergillus-Douchi produced by a typical industrial-scale factory. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Wang M, Li J, Liu X, Liu C, Qian J, Yang J, Zhou X, Jia Y, Tang J, Zeng L. Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites 2022; 12:1063. [PMID: 36355146 PMCID: PMC9695488 DOI: 10.3390/metabo12111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 10/08/2023] Open
Abstract
Lingtou Dancong oolong tea is a famous Chinese oolong tea due to its special honey-like aroma. However, little is known about its specific aroma profile and key contributors. Furthermore, whether the aroma characteristics of Lingtou Dancong oolong tea are affected by the environmental conditions at different altitudes is unknown. In this study, the aromas in Lingtou Dancong oolong tea were extracted and analyzed by stir-bar sorptive extraction (SBSE) combined with gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (GC-MS), and the aroma profiles of tea plants grown at different altitudes were compared. We detected 59 odor compounds in Lingtou Dancong oolong tea. Eight compounds with honey and floral odors were identified as key components on the basis of GC-O, GC-MS, odor activity value, and flavor dilution analyses. Differences in the contents of precursor geranyl diphosphate and transcript levels of structural genes were found to be responsible for the differential accumulation of linalool and hotrienol among plants grown at different altitudes. This is the first report on the aroma characteristics and key contributors of Lingtou Dancong oolong tea and their differences, as affected by altitude. These results provide details of the chemical basis of the aroma quality of Lingtou Dancong oolong tea.
Collapse
Affiliation(s)
- Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chengshun Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
Characterization and correlation of dominant bacteria and volatile compounds in post-fermentation process of Ba-bao Douchi. Food Res Int 2022; 160:111688. [DOI: 10.1016/j.foodres.2022.111688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
|
13
|
Marcinkowska MA, Jeleń HH. Role of Sulfur Compounds in Vegetable and Mushroom Aroma. Molecules 2022; 27:6116. [PMID: 36144849 PMCID: PMC9502545 DOI: 10.3390/molecules27186116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
At the base of the food pyramid is vegetables, which should be consumed most often of all food products, especially in raw and unprocessed form. Vegetables and mushrooms are rich sources of bioactive compounds that can fulfill various functions in plants, starting from protection against herbivores and being natural insecticides to pro-health functions in human nutrition. Many of these compounds contain sulfur in their structure. From the point of view of food producers, it is extremely important to know that some of them have flavor properties. Volatile sulfur compounds are often potent odorants, and in many vegetables, belonging mainly to Brassicaeae and Allium (Amaryllidaceae), sulfur compounds determine their specific flavor. Interestingly, some of the pathways that form volatile sulfur compounds in vegetables are also found in selected edible mushrooms. The most important odor-active organosulfur compounds can be divided into isothiocyanates, nitriles, epithionitriles, thiols, sulfides, and polysulfides, as well as others, such as sulfur containing carbonyl compounds and esters, R-L-cysteine sulfoxides, and finally heterocyclic sulfur compounds found in shiitake mushrooms or truffles. This review paper summarizes their precursors and biosynthesis, as well as their sensory properties and changes in selected technological processes.
Collapse
Affiliation(s)
| | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
14
|
The Enhancement of the Perception of Saltiness by Odorants Selected from Chinese Douchi in Salt Solution. Foods 2022; 11:foods11152260. [PMID: 35954027 PMCID: PMC9368459 DOI: 10.3390/foods11152260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Douchi is a traditional fermented soya bean product that is popular for its smelled saltiness and unique flavor. In order to look for the relationship between smelled saltiness of volatiles and their saltiness-enhancing properties, gas chromatography-olfactometry/associated taste was used to select odorants associated with saltiness in Yongchuan Douchi. The enhancement effects of saltiness intensity by selected odorants were further verified by sensory evaluation analyses of 2-alternative forced-choice and odor-induced saltiness enhancement in a follow-up study. A total of 14 odorant compounds were selected for their odor-associated saltiness perception. The compounds of 2-ethyl-3,5-dimethyl pyrazine, 2,5-dimethyl pyrazine, dimethyl trisulfide, 3-(methylthio) propanol and 3-(methylthio) propanal could significantly enhance saltiness perception in salt solution. Among them, 2-ethyl-3,5-dimethyl pyrazine was reported for the first time to be able to improve the salty taste. The study suggested that salty food is an ideal material for selecting saltiness-enhancing odorants, which could provide more direct theoretical support for salt reduction in the food industry.
Collapse
|
15
|
Liu M, Zhao X, Zhao M, Liu X, Pang Y, Zhang M. Characterization of the Key Aroma Constituents in Fried Tilapia through the Sensorics Concept. Foods 2022; 11:494. [PMID: 35205971 PMCID: PMC8870898 DOI: 10.3390/foods11040494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
The object of this study was tilapia fish that were fried in soybean oil. Volatile compounds were extracted from the fish by ASE-HVE and were studied by GC-O-MS and the AEDA analysis method. A total of 30 aroma compounds were initially determined, and these compounds contribute to the aroma of fried tilapias. The key volatile compounds in fried tilapia were quantitatively analyzed by GC-MS, and the volatile compounds in soybean-fried tilapia were studied by flavor recombination and deletion experiments. Trimethylamine, hexanal, 2,3-dimethylpyrazine, dimethyl trisulfide, trans-2-octenal, 2,3-dimethyl-5-ethylpyrazine, (E)-2-nonenal, 2-propyl-pyridine, and (E,E)-2,4-decadienal were finally determined to be the key volatile compounds in soybean-fried tilapia.
Collapse
Affiliation(s)
- Mingyuan Liu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (X.Z.); (M.Z.); (Y.P.); (M.Z.)
| | - Xiaoying Zhao
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (X.Z.); (M.Z.); (Y.P.); (M.Z.)
| | - Mouming Zhao
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (X.Z.); (M.Z.); (Y.P.); (M.Z.)
- College of Light Industry and Food Sciences, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoling Liu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (X.Z.); (M.Z.); (Y.P.); (M.Z.)
| | - Yiyang Pang
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (X.Z.); (M.Z.); (Y.P.); (M.Z.)
| | - Meishuo Zhang
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (X.Z.); (M.Z.); (Y.P.); (M.Z.)
| |
Collapse
|