1
|
Zhang Y, Hou H, Zhang X, Lan H, Huo X, Duan X, Li Y, Zhang X, Zhou N. CD8 + T-Cell-Related Genes: Deciphering Their Role in the Pancreatic Adenocarcinoma TME and Their Effect on Prognosis. Dig Dis Sci 2025; 70:262-284. [PMID: 39604668 DOI: 10.1007/s10620-024-08715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Because of the unique tumor microenvironment (TME), immunotherapy and targeted therapies have shown limited efficacy in treating pancreatic adenocarcinoma (PAAD). CD8 + T cells play crucial roles in regulating the TME in PAAD; therefore, exploring the function of CD8 + T-cell-related genes (CD8RGs) in PAAD has high potential clinical value and could provide a comprehensive understanding of the microenvironment of PAAD. METHODS We employed the weighted gene coexpression network analysis and CIBERSORT algorithms to assess PAAD transcriptome data from The Cancer Genome Atlas (TCGA) dataset and identify modules strongly associated with CD8 + T cell infiltration. Using least absolute shrinkage and selection operator regression analysis and Kaplan-Meier curves, we developed a prognostic risk score model for patients with PAAD. We validated this model using single-cell and transcriptome datasets obtained from the Gene Expression Omnibus (GEO). We also examined the correlations between the risk score and factors such as the TME, clinical characteristics, and tumor mutation burden (TMB). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed on differentially expressed genes between the high- and low-risk groups. In addition, the Tumor Immune Dysfunction and Exclusion website and "pRRophetic" R package were used to predict response to immunotherapy and chemotherapy in the high- and low-risk groups, respectively. Finally, we analyzed the expressions of hub genes at the cellular level with quantitative real-time PCR. RESULTS A risk model based on five CD8RGs was established and validated using TCGA and GEO datasets. The low-risk group exhibited significantly longer overall and progression-free survival. A positive correlation between the TMB and the risk score was observed. The TME analysis revealed a significant correlation between the risk score and immune function, as well as immune checkpoints. The expression of hub genes was significantly correlated with the infiltration level of CD8 + T cells. The high-risk group responded better to immunotherapy, paclitaxel, cisplatin, mitomycin C, afatinib (BIBW2992), and gefitinib. In contrast, the low-risk group showed higher sensitivity to sunitinib, MK.2206, palbociclib (PD.0332991), and axitinib. Compared with that in normal pancreatic epithelial cells, the expression levels of BCL11A, PHOSPHO1, and GNG7 were significantly decreased, while those of KLK11 and VCAM1 were significantly increased in pancreatic tumor cells. CONCLUSIONS CD8RGs play an important role in regulating the TME of PAAD. Five hub genes-BCL11A, KLK11, GNG7, PHOSPHO1, and VCAM1-are closely associated with the prognosis of PAAD patients, providing new references for the exploration of biomarkers. Furthermore, our findings offer novel insights for clinical decision-making.
Collapse
Affiliation(s)
- Yuming Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China
- Department of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Xuchen Zhang
- Department of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China
| | - Hongwei Lan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China
- Department of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China
| | - Xingfa Huo
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China
- Department of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China
| | - Xueqin Duan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China
- Department of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China
| | - Yufeng Li
- Department of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
2
|
Wu H, Geng Q, Shi W, Qiu C. Comprehensive pan-cancer analysis reveals CCDC58 as a carcinogenic factor related to immune infiltration. Apoptosis 2024; 29:536-555. [PMID: 38066393 DOI: 10.1007/s10495-023-01919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/18/2024]
Abstract
CCDC58, a member of the CCDC protein family, has been primarily associated with the malignant progression of hepatocellular carcinoma (HCC) and breast cancer, with limited research conducted on its involvement in other tumor types. We aimed to assess the significance of CCDC58 in pan-cancer. We utilized the TCGA, GTEx, and UALCAN databases to perform the differential expression of CCDC58 at both mRNA and protein levels. Prognostic value was evaluated through univariate Cox regression and Kaplan-Meier methods. Mutation and methylation analyses were conducted using the cBioPortal and SMART databases. We identified genes interacting with and correlated to CCDC58 through STRING and GEPIA2, respectively. Subsequently, we performed GO and KEGG enrichment analyses. To gain insights into the functional status of CCDC58 at the single-cell level, we utilized CancerSEA. We explored the correlation between CCDC58 and immune infiltration as well as immunotherapy using the ESTIMATE package, TIMER2.0, TISIDB, TIDE, TIMSO, and TCIA. We examined the relationship between CCDC58 and tumor heterogeneity, stemness, DNA methyltransferases, and MMR genes. Lastly, we constructed a nomogram based on CCDC58 in HCC and investigated its association with drug sensitivity. CCDC58 expression was significantly upregulated and correlated with poor prognosis across various tumor types. The mutation frequency of CCDC58 was found to be increased in 25 tumors. We observed a negative correlation between CCDC58 expression and the methylation sites in the majority of tumors. CCDC58 showed negative correlations with immune and stromal scores, as well as with NK T cells, Tregs, CAFs, endothelial cells, and immunomodulators. Its value in immunotherapy was comparable to that of tumor mutational burden. CCDC58 exhibited positive correlations with tumor heterogeneity, stemness, DNA methyltransferase genes, and MMR genes. In HCC, CCDC58 was identified as an independent risk factor and demonstrated potential associations with multiple drugs. CCDC58 demonstrates significant clinical value as a prognostic marker and indicator of immune response across various tumor types. Its comprehensive analysis provides insights into its potential implications in pan-cancer research.
Collapse
Affiliation(s)
- Huili Wu
- Department of Endodontics, Zhonglou Hospital, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Qing Geng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China.
| |
Collapse
|
3
|
Phimphila A, Aung TM, Wongwattanakul M, Maraming P, Tavichakorntrakool R, Proungvitaya T, Daduang J, Proungvitaya S. Serum CCDC25 Levels as a Potential Marker for Metabolic Syndrome. In Vivo 2024; 38:785-793. [PMID: 38418150 PMCID: PMC10905474 DOI: 10.21873/invivo.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Metabolic syndrome (MetS) stands as a significant risk for developing various severe health problems. Therefore, the discovery of biomarkers capable of predicting the progression of metabolic conditions is crucial for improving overall health outcomes. Recently, we reported that coiled-coil domain containing 25 (CCDC25) might be associated with key proteins involved in metabolic pathways, by bioinformatics analysis. Thus, we assumed that serum CCDC25 levels might have an association with MetS status. PATIENTS AND METHODS In this study, based on the modified National Cholesterol Education Program-Adult Treatment Panel III (modified NCEP-ATP III) criteria, the participants who had three or more of abnormal criteria were defined as MetS, and those who had 1 or 2 abnormal criteria as pre-MetS groups; those who had no abnormal criteria were classified as the healthy control (HC) group. Serum CCDC25 levels were measured using the dot blot assay. RESULTS The results showed that serum CCDC25 levels of the MetS group (0.072±0.026 ng/μl) were significantly higher (p<0.001) than that of pre-MetS (0.031±0.011 ng/μl) or HC groups (0.018±0.007 ng/μl). We can discern a consistent trend indicating that serum CCDC25 level is well correlated with the number of abnormal criteria of MetS of each participant. Although serum CCDC25 levels correlated with the distribution of all 5 MetS criteria, the highest correlation was seen in serum CCDC25 levels and triglyceride (TG) levels, with r=0.563, followed by systolic blood pressure (SBP) levels (r=0.557) and high-density lipoprotein-cholesterol (HDL-C) levels (r=-0.545). CONCLUSION CCDC25 showed correlations with all MetS parameters, particularly with TG, SBP, and HDL-C. This prompts speculation that heightened CCDC25 levels may indicate the development and/or progression of those MetS-associated diseases.
Collapse
Affiliation(s)
- Anousone Phimphila
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Tin May Aung
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Molin Wongwattanakul
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Center for Innovation and Standard for Medical Technology and Physical Therapy (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pornsuda Maraming
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ratree Tavichakorntrakool
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jureerut Daduang
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Qian Z, Zhao H, Zhang Y, Wang Z, Zeng F, Zhu Y, Yang Y, Li J, Ma T, Huang C. Coiled-coil domain containing 25 (CCDC25) regulates cell proliferation, migration, and invasion in clear cell renal cell carcinoma by targeting the ILK-NF-κB signaling pathway. FASEB J 2024; 38:e23414. [PMID: 38236371 DOI: 10.1096/fj.202301064rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
Increasing evidence has demonstrated that the expression of coil domains containing 25 (CCDC25) in various malignancies is abnormally high. However, the potential regulatory role and mechanism of CCDC25 in the development of clear cell renal cell carcinoma (ccRCC) are still unclear. In this experiment, we combined in vitro experiments such as wound healing, CCK8, and transwell assay with in vivo experiments on tumor formation in nude mice to evaluate the effect of CCDC25 on the proliferation, migration, and invasion of renal cancer cells. In addition, we also used Western blotting and qPCR to evaluate the role of CCDC25 in activating the integrin-linked kinase (ILK)-NF-κB signaling pathway. Here, we demonstrate that compared to normal tissues and cell lines, CCDC25 is overexpressed in both human ccRCC tissues and cell lines. After CCDC25 knockdown, it has obvious inhibitory effect on the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In contrast, CCDC25 overexpression promotes these effects. Additionally, we also discovered that CCDC25 interacts with ILK and coordinates the activation of the NF-κB signaling pathway downstream. Generally, our study suggests that CCDC25 plays a vital role in the development of ccRCC, which also means that it may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zhenzhen Qian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhonghao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fanle Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, hefei, China
| | - Yaru Yang
- The Second Affiliated Hospital of Anhui Medical University, hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
5
|
Kafle A, Suttiprapa S. Current State of Knowledge on Blood and Tissue-Based Biomarkers for Opisthorchis viverrini-induced Cholangiocarcinoma: A Review of Prognostic, Predictive, and Diagnostic Markers. Asian Pac J Cancer Prev 2024; 25:25-41. [PMID: 38285765 PMCID: PMC10911713 DOI: 10.31557/apjcp.2024.25.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a prevalent cancer in Southeast Asia, with Opisthorchis viverrini (O.viverrini) infection being the primary risk factor. Most CCA cases in this region are diagnosed at advanced stages, leading to unfavorable prognoses. The development of stage-specific biomarkers for Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) holds crucial significance, as it facilitates early detection and timely administration of curative interventions, effectively mitigating the high morbidity and mortality rates associated with this disease in the Great Mekong region. Biomarkers are a promising approach for early detection, prognosis, and targeted treatment of CCA. Disease-specific biomarkers facilitate early detection and enable monitoring of therapy effectiveness, allowing for any necessary corrections. This review provides an overview of the potential O. viverrini-specific molecular biomarkers and important markers for diagnosing and monitoring Ov-CCA, discussing their prognostic, predictive, and diagnostic value. Despite the limited research in this domain, several potential biomarkers have been identified, encompassing both worm-induced and host-induced factors. This review offers a thorough examination of historical and contemporary progress in identifying biomarkers through multiomics techniques, along with their potential implications for early detection and treatment.
Collapse
Affiliation(s)
- Alok Kafle
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
6
|
Ke H, Yuan R, Liu H, Luo M, Hu H, Zhang E, Zhuang K, Yang Y, Yang R. Serum protein biomarkers for HCC risk prediction in HIV/HBV co-infected people: a clinical proteomic study using mass spectrometry. Front Immunol 2023; 14:1282469. [PMID: 38022651 PMCID: PMC10667720 DOI: 10.3389/fimmu.2023.1282469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background HBV coinfection is frequent in people living with HIV (PLWH) and is the leading cause of hepatocellular carcinoma (HCC). While risk prediction methods for HCC in patients with HBV monoinfection have been proposed, suitable biomarkers for early diagnosis of HCC in PLWH remain uncommon. Methods Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine serum protein alterations in HCC and non-HCC patients with HIV and HBV co-infection. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) enrichment analysis were performed on the differentially expressed proteins (DEPs). The risk prediction model was created using five-cross-validation and LASSO regression to filter core DEPs. Results A total of 124 DEPs were discovered, with 95 proteins up-regulated and 29 proteins down-regulated. Extracellular matrix organization and membrane component were the DEPs that were most abundant in the categories of biological processes (BP) and cellular components (CC). Proteoglycans in cancer were one of the top three DEPs primarily enriched in the KEGG pathway, and 60.0% of DEPs were linked to various neoplasms in terms of DO enrichment. Eleven proteins, including GAPR1, PLTP, CLASP2, IGHV1-69D, IGLV5-45, A2M, VNN1, KLK11, ANPEP, DPP4 and HYI, were chosen as the core DEPs, and a nomogram was created to predict HCC risk. Conclusion In HIV/HBV patients with HCC, several differential proteins can be detected in plasma by mass spectrometry, which can be used as screening markers for early diagnosis and risk prediction of HCC. Monitoring protease expression differences can help in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Hengning Ke
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Center for AIDS Research, Wuhan University, Wuhan, Hubei, China
| | - Rui Yuan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingqi Luo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Center for AIDS Research, Wuhan University, Wuhan, Hubei, China
| | - Hui Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Center for AIDS Research, Wuhan University, Wuhan, Hubei, China
| | - Ejuan Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Zhuang
- Animal Biosafety Level 3 Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Yong Yang
- SpecAlly Life Technology Co., Ltd., Wuhan Institute of Biotechnology, Wuhan, China
| | - Rongrong Yang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Center for AIDS Research, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
8
|
Prediction of CIAPIN1 (Cytokine-Induced Apoptosis Inhibitor 1) Signaling Pathway and Its Role in Cholangiocarcinoma Metastasis. J Clin Med 2022; 11:jcm11133826. [PMID: 35807116 PMCID: PMC9267148 DOI: 10.3390/jcm11133826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cholangiocarcinoma (CCA), a malignancy of the biliary epithelium, can arise at any point in the biliary system. We previously reported that CIAPIN1 is detectable in the sera and that its overexpression was associated with poor prognosis and metastasis of CCA patients. In this study, we investigated further its expression in CCA tissues, biological functions, and related signaling pathways in CCA cells. First, we examined CIAPIN1 expression in CCA tissues of 39 CCA patients using immunohistochemistry (IHC). Then, CIAPIN1-related proteins expressed in CCA cells were identified using RNA interference (siRNA) and liquid chromatography–mass spectrometry (LC–MS/MS). To predict the functions and signaling pathways of CIAPIN1 in CCA cells, the identified proteins were analyzed using bioinformatics tools. Then, to validate the biological functions of CIAPIN1 in the CCA cell line, transwell migration/invasion assays were used. CIAPIN1 was overexpressed in CCA tissues compared with adjacent noncancerous tissues. Its overexpression was correlated with lymph node metastasis. Bioinformatic analyses predicted that CIAPIN1 is connected to the TGF-β/SMADs signaling pathway via nitric oxide synthase 1 (NOS1) and is involved in the metastasis of CCA cells. In fact, cell migration and invasion activities of the KKU-100 CCA cell line were significantly suppressed by CIAPIN1 gene silencing. Our results unravel its novel function and potential signaling pathway in metastasis of CCA cells. CIAPIN1 can be a poor prognostic factor and can be a promising target molecule for CCA chemotherapy.
Collapse
|
9
|
Mocan LP, Ilieș M, Melincovici CS, Spârchez M, Crăciun R, Nenu I, Horhat A, Tefas C, Spârchez Z, Iuga CA, Mocan T, Mihu CM. Novel approaches in search for biomarkers of cholangiocarcinoma. World J Gastroenterol 2022; 28:1508-1525. [PMID: 35582128 PMCID: PMC9048460 DOI: 10.3748/wjg.v28.i15.1508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) arises from the ductular epithelium of the biliary tree, either within the liver (intrahepatic CCA) or more commonly from the extrahepatic bile ducts (extrahepatic CCA). This disease has a poor prognosis and a growing worldwide prevalence. The poor outcomes of CCA are partially explained by the fact that a final diagnosis is challenging, especially the differential diagnosis between hepatocellular carcinoma and intrahepatic CCA, or distal CCA and pancreatic head adenocarcinoma. Most patients present with an advanced disease, unresectable disease, and there is a lack in non-surgical therapeutic modalities. Not least, there is an acute lack of prognostic biomarkers which further complicates disease management. Therefore, there is a dire need to find alternative diagnostic and follow-up pathways that can lead to an accurate result, either singlehandedly or combined with other methods. In the "-omics" era, this goal can be attained by various means, as it has been successfully demonstrated in other primary tumors. Numerous variants can reach a biomarker status ranging from circulating nucleic acids to proteins, metabolites, extracellular vesicles, and ultimately circulating tumor cells. However, given the relatively heterogeneous data, extracting clinical meaning from the inconsequential noise might become a tall task. The current review aims to navigate the nascent waters of the non-invasive approach to CCA and provide an evidence-based input to aid clinical decisions and provide grounds for future research.
Collapse
Affiliation(s)
- Lavinia-Patricia Mocan
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Mihaela Spârchez
- 2nd Pediatrics Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Rareș Crăciun
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Iuliana Nenu
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Adelina Horhat
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristian Tefas
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Zeno Spârchez
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Tudor Mocan
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|