1
|
Wang H, Li Z, Cao G, Tang L, Zhou R, Li C, Zhang J, Wu H, Li X, Yang H. Targeted Energy Metabolomics Combined with Spatial Metabolomics Study on the Efficacy of Guhong Injection Against Cerebral Ischemia Reperfusion. Mol Neurobiol 2023; 60:5533-5547. [PMID: 37328677 DOI: 10.1007/s12035-023-03403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Optimizing the metabolic phenotype to improve cerebral function is critical for treatment of cerebral ischemia-reperfusion (I/R) injury. Guhong injection (GHI), which comprised safflower extract and aceglutamide, is widely prescribed in Chinese medicine for the treatment of cerebrovascular diseases. In this study, a combination of LC-QQQ-MS and MALDI-MSI were utilized to explore tissue-specific metabolic alterations in the brain of I/R, as well as to evaluate the therapeutic effect of GHI. Pharmacological evaluation demonstrated that GHI can significantly improve infarction rate, neurological deficit, cerebral blood flow, and neuronal damage in I/R rats. Based on LC-QQQ-MS, 23 energy metabolites were found to be significantly altered in the I/R group compared to the sham group (P < 0.05). After GHI treatment, 12 metabolites, including G6P, TPP, NAD, citrate, succinate, malate, ATP, GTP, GDP, ADP, NADP, and FMN showed a significant tendency of returning to baseline values (P < 0.05). Based on MALDI-MSI, 4 metabolites in glycolysis and TCA, 4 metabolites in nucleic acid metabolism, 4 amino acid metabolites, and 6 metabolites were discovered and compared between the different groups in the four special regions of cortex, hippocampus, hypothalamus, and striatum. Parts of these were found to have significant changes after I/R in the special brain region, and were regulated by GHI. The study provides comprehensive and detailed information for specific metabolic reprogramming of brain tissue in rats with I/R, and the therapeutic effect of GHI. Schema describing the discovery strategies of integrated LC-MS and MALDI-MSI to identify cerebral ischemia reperfusion metabolic reprogramming and GHI therapeutic effects.
Collapse
Affiliation(s)
- Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Zhenkun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Caifeng Li
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
| | - Xianyu Li
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
2
|
Montgomery K, Elhabashy A, Chen G, Chen QH, Krishnan VV. Targeted F 19 - tags to detect amino acids in complex mixtures using NMR spectroscopy. J Fluor Chem 2023; 266:110084. [PMID: 39450044 PMCID: PMC11500796 DOI: 10.1016/j.jfluchem.2022.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear magnetic resonance spectroscopy of fluorine-19 nucleus ( F 19 -NMR) emerges as a powerful tool because of the high sensitivity due to its high natural abundance, broad spectral range, and the simplicity of a spin-half system. However, it is still seldom utilized in the chemistry classroom or research. This article thus aims to demonstrate the power of NMR by investigating the kinetics when a F 19 - tag reacts with individual amino acids (AA) and eventually utilizing the approach to identify and quantify various AAs from a complex mixture such as a metabolomics sample. The F 19 - tag named 2,5-dioxopyrrolidin-1-yl-2-(trifluoromethyl)benzoate was synthesized following a previously established method. The reaction kinetics of the tag was then continuously measured using F 19 NMR in the presence of selected AAs. The estimated reaction rate constants to form the F 19 - tags with each AA differ, which could be used as an identification tool. The tag formations were typically completed in 24-48 h in water for all the samples. These demonstrations suggest that F 19 - tags could form the basis for chemical kinetics and AA detection using F 19 -NMR.
Collapse
Affiliation(s)
- Keeton Montgomery
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Aya Elhabashy
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - V V Krishnan
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
3
|
Kreuzer K, Reiter A, Birkl-Töglhofer AM, Dalkner N, Mörkl S, Mairinger M, Fleischmann E, Fellendorf F, Platzer M, Lenger M, Färber T, Seidl M, Birner A, Queissner R, Mendel LMS, Maget A, Kohlhammer-Dohr A, Häussl A, Wagner-Skacel J, Schöggl H, Amberger-Otti D, Painold A, Lahousen-Luxenberger T, Leitner-Afschar B, Haybaeck J, Habisch H, Madl T, Reininghaus E, Bengesser S. The PROVIT Study-Effects of Multispecies Probiotic Add-on Treatment on Metabolomics in Major Depressive Disorder-A Randomized, Placebo-Controlled Trial. Metabolites 2022; 12:770. [PMID: 36005642 PMCID: PMC9414726 DOI: 10.3390/metabo12080770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
The gut-brain axis plays a role in major depressive disorder (MDD). Gut-bacterial metabolites are suspected to reduce low-grade inflammation and influence brain function. Nevertheless, randomized, placebo-controlled probiotic intervention studies investigating metabolomic changes in patients with MDD are scarce. The PROVIT study (registered at clinicaltrials.com NCT03300440) aims to close this scientific gap. PROVIT was conducted as a randomized, single-center, double-blind, placebo-controlled multispecies probiotic intervention study in individuals with MDD (n = 57). In addition to clinical assessments, metabolomics analyses (1H Nuclear Magnetic Resonance Spectroscopy) of stool and serum, and microbiome analyses (16S rRNA sequencing) were performed. After 4 weeks of probiotic add-on therapy, no significant changes in serum samples were observed, whereas the probiotic groups' (n = 28) stool metabolome shifted towards significantly higher concentrations of butyrate, alanine, valine, isoleucine, sarcosine, methylamine, and lysine. Gallic acid was significantly decreased in the probiotic group. In contrast, and as expected, no significant changes resulted in the stool metabolome of the placebo group. Strong correlations between bacterial species and significantly altered stool metabolites were obtained. In summary, the treatment with multispecies probiotics affects the stool metabolomic profile in patients with MDD, which sets the foundation for further elucidation of the mechanistic impact of probiotics on depression.
Collapse
Affiliation(s)
- Kathrin Kreuzer
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexandra Reiter
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Anna Maria Birkl-Töglhofer
- Neuropathology and Molecular Pathology, Institute for Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Nina Dalkner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Sabrina Mörkl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Marco Mairinger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Eva Fleischmann
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Frederike Fellendorf
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Martina Platzer
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Melanie Lenger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Tanja Färber
- Institute for Psychology, Otto Friedrich University of Bamberg, 96047 Bamberg, Germany
| | - Matthias Seidl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Armin Birner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Robert Queissner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Lilli-Marie Stefanie Mendel
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Maget
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alfred Häussl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Jolana Wagner-Skacel
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Helmut Schöggl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Daniela Amberger-Otti
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Annemarie Painold
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Theresa Lahousen-Luxenberger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Brigitta Leitner-Afschar
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Johannes Haybaeck
- Neuropathology and Molecular Pathology, Institute for Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Division for Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Division for Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Eva Reininghaus
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Susanne Bengesser
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|