1
|
Wen B, Li Y, Liang C, Chen Y, Zhao Y, Wang Q. Recent Progress on Porous Carbons for Carbon Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8327-8351. [PMID: 38606587 DOI: 10.1021/acs.langmuir.3c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
High emission of carbon dioxide (CO2) has caused CO2 levels to reach more than 400 ppm in air and led to a serious climate problem. In addition, in confined spaces such as submarines and aircraft, the CO2 concentration increase in the air caused by human respiration also affects human health. In order to protect the environment and human health, the search for high-performance adsorbents for carbon capture from high and low concentration gas is particularly important. Porous carbon materials, possessing the advantages of low cost and renewability, have set off a boom in the research of porous adsorbents, which have the opportunity to be utilized on a large scale for industrial carbon capture in the future. In this review, we summarize the recent research progress of porous carbons for carbon capture from flue gas and directly from air in the last five years, including activated carbon (AC), heteroatom-modified porous carbon, carbon molecular sieves (CMS), and other porous carbon materials, with a focus on the effects of temperature, water content, and gas flow rate of industrial flue gas on the performance of porous carbon adsorbents. We summarize the preparation strategies of various porous carbons and seek environmental friendly porous carbon materials preparation strategies under the premise of improving the CO2 adsorption capacity and selectivity of porous carbon adsorbents. Based on the effects of real industrial flue gas on adsorbents, we provide new ideas and evaluation methods for the development and preparation of porous carbon materials.
Collapse
Affiliation(s)
- Biao Wen
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yang Li
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Congcong Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yanli Chen
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
2
|
Thakur A, Kumar A. Unraveling the multifaceted mechanisms and untapped potential of activated carbon in remediation of emerging pollutants: A comprehensive review and critical appraisal of advanced techniques. CHEMOSPHERE 2024; 346:140608. [PMID: 37925026 DOI: 10.1016/j.chemosphere.2023.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
The rapid global expansion of industrialization has resulted in the discharge of a diverse range of hazardous contaminants into the ecosystem, leading to extensive environmental contamination and posing a pressing ecological concern. In this context, activated carbon (AC) has emerged as a highly promising adsorbent, offering significant advantages over conventional forms. For instance, AC has demonstrated remarkable adsorption capabilities, as evidenced by the successful removal of atrazine and ibuprofen using KOH and KOH-CO2-activated char, achieving impressive adsorption rates of 90% and 95%, respectively, at an initial dosage of 10 mg L-1. Moreover, AC can effectively adsorb aromatic compounds through π-π stacking interactions. The aromatic rings in organic molecules can align and interact with the carbon atoms in AC's structure, leading to effective adsorption. In this review, by employing a systematic analysis of recent research findings (majorly from 2015 to 2023), an in-depth exploration of AC's evolution and its wide-ranging applications in adsorbing and remediating emerging pollutants, including dyes, organic contaminants, and hazardous gases and mitigating the adverse impacts of such emerging pollutants on ecosystems have been discussed. It serves as a valuable resource for researchers, professionals, and policymakers involved in environmental remediation and pollution control, facilitating the development of sustainable and effective strategies for mitigating the global impact of emerging pollutants.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department , Government of Bihar, 803108, India.
| |
Collapse
|
3
|
Wang Y, Xu J, Lin X, Wang B, Zhang Z, Xu Y, Suo Y. Facile synthesis of MOF-5-derived porous carbon with adjustable pore size for CO2 capture. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Polyaniline Anchoring Environment Facilitates Highly Efficient CO2 Electroreduction of Cobalt Phthalocyanine over a Wide Potential Window. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Gong L, Hang Y, Li J, Dai G, Bao A. Simple fabrication of a phosphorus‐doped hierarchical porous carbon via soft‐template method for efficient CO
2
capture. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lingzhen Gong
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science Inner Mongolia Normal University Hohhot China
| | - Yongping Hang
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science Inner Mongolia Normal University Hohhot China
| | - Jinhao Li
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science Inner Mongolia Normal University Hohhot China
| | - Gang Dai
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science Inner Mongolia Normal University Hohhot China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science Inner Mongolia Normal University Hohhot China
| |
Collapse
|
6
|
Esrafili MD, Mousavian P. Sc-functionalized porphyrin-like porous fullerene for CO 2 storage and separation: A first-principles evaluation. J Mol Graph Model 2021; 111:108112. [PMID: 34942495 DOI: 10.1016/j.jmgm.2021.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
In recent years, there has been a lot of interest in capturing and storing carbon dioxide (CO2) on porous materials as an efficient method for decreasing the adverse effects of this greenhouse gas on the environment and climate change. The current work introduces a Sc-decorated porphyrin-like porous fullerene (Sc6@C24N24) as an efficient material for CO2 capture, storage, and separation using density functional theory calculations. While CO2 is physisorbed over pristine C24N24, the addition of Sc atoms on the N4 sites of C24N24 greatly enhances CO2 adsorption energy. Each Sc atom in Sc6@C24N24 may adsorb up to three CO2 molecules, resulting in a gravimetric density of 48%. Moreover, temperature may be used to modulate CO2 adsorption/desorption over the substrate. The Sc-decorated C24N24 fullerene exhibits a lower affinity for adsorbing N2, CH4, and H2 molecules than CO2. As a consequence, this material might be considered for purifying CO2 molecules from CO2/N2, CO2/CH4, and CO2/H2 mixtures. This study also sheds light on the nature of the Sc-CO2 interaction as well as the underlying mechanism of selective CO2 adsorption on Sc decorated C24N24.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| | - Parisasadat Mousavian
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran; Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
7
|
Cueto-Díaz EJ, Castro-Muñiz A, Suárez-García F, Gálvez-Martínez S, Torquemada-Vico MC, Valles-González MP, Mateo-Martí E. APTES-Based Silica Nanoparticles as a Potential Modifier for the Selective Sequestration of CO 2 Gas Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2893. [PMID: 34835658 PMCID: PMC8620991 DOI: 10.3390/nano11112893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
In this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO2 sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO2 sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO2 (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO2 (50 nm), show a remarkable CO2 sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively at 50 °C). Furthermore, when comparing them to their 200 nm size counterparts (SiO2 (200 nm) and APTES@SiO2 (200 nm)), there is a marked CO2 capture increment as a consequence of their significantly larger micropore volume (0.25 cm3/g). Additionally, ideal absorbed solution theory (IAST) was conducted to determine the CO2/N2 selectivity at 25 and 50 °C of the four materials of study, which turned out to be >70, being in the range of performance of the most efficient microporous materials reported to date, even surpassing those based on silica.
Collapse
Affiliation(s)
- Eduardo J. Cueto-Díaz
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| | - Alberto Castro-Muñiz
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC), C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (A.C.-M.); (F.S.-G.)
| | - Fabián Suárez-García
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC), C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (A.C.-M.); (F.S.-G.)
| | - Santos Gálvez-Martínez
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| | - Mª Carmen Torquemada-Vico
- Departamento de Óptica Espacial, Instituto Nacional de Técnica Aeroespacial, Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Mª Pilar Valles-González
- Departamento de Materiales y Estructuras, Instituto Nacional de Técnica Aeroespacial, Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Eva Mateo-Martí
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| |
Collapse
|
8
|
Hajjar P, Lacour MA, Masquelez N, Cambedouzou J, Tingry S, Cornu D, Holade Y. Insights on the Electrocatalytic Seawater Splitting at Heterogeneous Nickel-Cobalt Based Electrocatalysts Engineered from Oxidative Aniline Polymerization and Calcination. Molecules 2021; 26:molecules26195926. [PMID: 34641469 PMCID: PMC8512141 DOI: 10.3390/molecules26195926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Given the limited access to freshwater compared to seawater, a growing interest surrounds the direct seawater electrolysis to produce hydrogen. However, we currently lack efficient electrocatalysts to selectively perform the oxygen evolution reaction (OER) over the oxidation of the chloride ions that are the main components of seawater. In this contribution, we report an engineering strategy to synthesize heterogeneous electrocatalysts by the simultaneous formation of separate chalcogenides of nickel (NiSx, x = 0, 2/3, 8/9, and 4/3) and cobalt (CoSx, x = 0 and 8/9) onto a carbon-nitrogen-sulfur nanostructured network. Specifically, the oxidative aniline polymerization in the presence of metallic cations was combined with the calcination to regulate the separate formation of various self-supported phases in order to target the multifunctional applicability as both hydrogen evolution reaction (HER) and OER in a simulated alkaline seawater. The OER’s metric current densities of 10 and 100 mA cm−2 were achieved at the bimetallic for only 1.60 and 1.63 VRHE, respectively. This high-performance was maintained in the electrolysis with a starting voltage of 1.6 V and satisfactory stability at 100 mA over 17 h. Our findings validate a high selectivity for OER of ~100%, which outperforms the previously reported data of 87–95%.
Collapse
Affiliation(s)
- Perla Hajjar
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | | | - Nathalie Masquelez
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - Julien Cambedouzou
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - Sophie Tingry
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
| | - Yaovi Holade
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France; (P.H.); (N.M.); (J.C.); (S.T.); (D.C.)
- Correspondence: ; Tel.: +33-467-14-92-94
| |
Collapse
|
9
|
Wang Y, Xiao J, Zhang T, Ouyang L, Yuan S. Single-Step Preparation of Ultrasmall Iron Oxide-Embedded Carbon Nanotubes on Carbon Cloth with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45670-45678. [PMID: 34538050 DOI: 10.1021/acsami.1c15337] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocomposites consisting of carbon materials and metal oxides are generally preferred as anodes in electrochemical energy storage. However, their low capacitance limits the achieved energy density of supercapacitors (SCs) in aqueous electrolytes. Herein, we propose a rapid combustion strategy to construct a novel electrode architecture-ultrasmall Fe2O3 anchoring on carbon nanotubes (FeO-CNT)-as a superhydrophilic and flexible anode for SCs. In 1 M Na2SO4 aqueous electrolyte, such an FeO-CNT-20 anode presents a high capacitance of 483.4 mF cm-2 (326 F g-1) at 1 mA cm-2. The aqueous asymmetric supercapacitor devices (ASCs) assembled by FeO-CNT-20 and MnO2 present a maximum operating potential of 2.0 V with a high areal energy density of 0.11 mWh cm-2 at a power density of 0.5 mW cm-2. The flexible solid-state ASCs display an energy density of 0.99 mWh cm-3 at 14.3 mW cm-3. The rapidly prepared FeO-CNT not only offers an attractive electrode for SCs but also would open up exciting new avenues to the rational design and large-scale preparation of Fe2O3-based nanocomposites for electrochemical energy storage.
Collapse
Affiliation(s)
- Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianfei Xiao
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Ouyang L, Xiao J, Jiang H, Yuan S. Nitrogen-Doped Porous Carbon Materials Derived from Graphene Oxide/Melamine Resin Composites for CO 2 Adsorption. Molecules 2021; 26:molecules26175293. [PMID: 34500736 PMCID: PMC8434559 DOI: 10.3390/molecules26175293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022] Open
Abstract
CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.
Collapse
|