1
|
Fang G, Hao P, Qiao R, Liu BX, Shi X, Wang Z, Sun P. Stimuli-responsive chitosan based nanoparticles in cancer therapy and diagnosis: A review. Int J Biol Macromol 2024; 283:137709. [PMID: 39549789 DOI: 10.1016/j.ijbiomac.2024.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Chitosan, obtained through deacetylation of chitin, has been shown to a promising biopolymer for the development of nano- and micro-particles. In spite of inherent anti-cancer activity of chitosan, the employment of this carbohydrate polymer for the synthesis of nanoparticles opens a new gate in disease therapy. The properties of chitosan including biocompatibility, biodegradability, and modifiability are vital in enhancing these nanoparticles, allowing for improved solubility and interaction with cellular targets. Among the pathological events, cancer has demonstrated an increase in incidence rate and therefore, the chitosan nanoparticles have been significantly utilized in cancer therapy. The present review emphasizes on the role of stimuli-responsive chitosan nanoparticles in the field of cancer therapy. The stimuli-responsive nanoparticles can release the cargo in the tumor site that not only improves the anti-cancer activity of chemotherapy drugs, but also diminishes their systemic toxicity. The stimuli-responsive chitosan nanoparticles can respond to endogenous and exogenous stimuli including pH, redox and light to release cargo. This improves the specificity towards tumor cells and enhances accumulation of drugs and/or drugs. The light-responsive chitosan nanoparticles can cause photothermal and photodynamic therapy in tumor ablation and provide theranostic feature that is cancer diagnosis and therapy simultaneously.
Collapse
Affiliation(s)
- Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Peng Hao
- Department of Joint Surgery, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing 400038, PR China
| | - Ruonan Qiao
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bi-Xia Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiujuan Shi
- School of Medicine, Tongji university, Shanghai 200092, China.
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital, Inner Mongolia Campus, Afliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, China.
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Abu Lila AS, Bhattacharya R, Moin A, Al Hagbani T, Abdallah MH, Danish Rizvi SM, Khafagy ES, Hussain T, Gangadharappa HV. Dual targeting multiwalled carbon nanotubes for improved neratinib delivery in breast cancer. RSC Adv 2023; 13:24309-24318. [PMID: 37583664 PMCID: PMC10424192 DOI: 10.1039/d3ra04732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
The aim of this study was to develop biotinylated chitosan (Bio-Chi) decorated multi-walled carbon nanotubes (MWCNTs) for breast cancer therapy with the tyrosine kinase inhibitor, neratinib (NT). For achieving such a purpose, carboxylic acid functionalized multiwalled carbon nanotubes (c-MWCNTs) were initially decorated non-covalently with biotin-chitosan (Bio-Chi) coating for achieving a dual targeting mode; pH-dependent release with chitosan and biotin-receptor mediated active targeting with biotin. Afterwards, Bio-Chi decorated c-MWCNTs were loaded with the tyrosine kinase inhibitor, neratinib (NT). The formulation was then characterized by dynamic light scattering, FTIR and EDX. The drug loading efficiency was estimated to be 95.6 ± 1.2%. In vitro drug release studies revealed a pH-dependent release of NT from Bio-Chi decorated c-MWCNTs, with a higher drug release under acidic pH conditions. Sulforhodamine B (SRB) cytotoxicity assay of different NT formulations disclosed dose-dependent cytotoxicities against SkBr3 cell line, with a superior cytotoxicity observed with NT-loaded Bio-Chi-coated c-MWCNTs, compared to either free NT or NT-loaded naked c-MWCNTs. The IC50 values for free NT, NT-loaded c-MWCNTs and NT-loaded Bio-Chi-coated c-MWCNTs were 548.43 ± 23.1 μg mL-1, 319.55 ± 17.9 μg mL-1, and 257.75 ± 24.5 μg mL-1, respectively. Interestingly, competitive cellular uptake studies revealed that surface decoration of drug-loaded c-MWCNTs with Bio-Chi permitted an enhanced uptake of c-MWCNTs by breast cancer cells, presumably, via biotin receptors-mediated endocytosis. To sum up, Bio-Chi-decorated c-MWCNTs might be a promising delivery vehicle for mediating cell-specific drug delivery to breast cancer cells.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Rohini Bhattacharya
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru 570015 India
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | - Marwa Helmy Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | | |
Collapse
|
3
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
4
|
Duceac IA, Coseri S. Biopolymers and their derivatives: Key components of advanced biomedical technologies. Biotechnol Adv 2022; 61:108056. [DOI: 10.1016/j.biotechadv.2022.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
5
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
6
|
Biotinylated chitosan macromolecule based nanosystems: A review from chemical design to biological targets. Int J Biol Macromol 2021; 188:82-93. [PMID: 34363823 DOI: 10.1016/j.ijbiomac.2021.07.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
World Health Organization estimates that 30-50% of cancers are preventable by healthy lifestyle choices, early detection and adequate therapy. When the conventional therapeutic strategies are still regulated by the lack of selectivity, multidrug resistance and severe toxic side effects, nanotechnology grants a new frontier for cancer management since it targets cancer cells and spares healthy tissues. This review highlights recent studies using biotin molecule combined with functional nanomaterials used in biomedical applications, with a particular attention on biotinylated chitosan-based nanosystems. Succinctly, this review focuses on five areas of recent advances in biotin engineering: (a) biotin features, (b) biotinylation approaches, (c) biotin functionalized chitosan based nanosystems for drug and gene delivery functions, (d) diagnostic and theranostic perspectives, and (e) author's inputs to the biotin-chitosan based tumour-targeting drug delivery structures. Precisely engineered biotinylated-chitosan macromolecules shaped into nanosystems are anticipated to emerge as next-generation platforms for treatment and molecular imaging modalities applications.
Collapse
|