1
|
Nagy Á, Ulmert D, Zedan W, Storey CM, Park J, Geres S, Lückerath K, Sjöström K, Westin H, Peekhaus N, Thorek DL, Karlström AE, Altai M. Impact of site-specific conjugation strategies on the pharmacokinetics of antibody conjugated radiotherapeutics. Eur J Med Chem 2024; 280:116927. [PMID: 39378827 DOI: 10.1016/j.ejmech.2024.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Antibody radionuclide conjugates are an emerging modality for targeted imaging and potent therapy of disseminated disease. Coupling of radionuclides to monoclonal antibodies (mAbs) is typically achieved by applying non-site-specific labelling techniques. With the ambition of reducing variability, increasing labelling efficacy and stability, several site-specific conjugation strategies have been developed in recent years for toxin- and fluorophore-mAb conjugates. In this study, we studied two site-specific labelling strategies for the conjugation of the macrocyclic chelating agent, DOTA, to the anti-Leucine Rich Repeat Containing 15 (LRRC15) mAb DUNP19. Specifically, one approach utilized a DOTA-bearing peptide (FcIII) with a strong affinity for the fragment crystallizable (Fc) domain of the human IgG1 of DUNP19 (DUNP19LF-FcIII-DOTASS), while the other leveraged a chemo-enzymatic technique to substitute the N-linked bi-antennary oligosaccharides in the human IgG1 Fc domain with DOTA (DUNP19LF-gly-DOTASS). To assess if these methods impact the antibody's binding properties and targeting efficacy, comparative in vitro and in vivo studies of the generated DUNP19-conjugates were performed. While the LRRC15 binding of both radioimmunoconjugates remained intact, the conjugation methods had different impacts on their abilities to interact with FcRn and FcγRs. In vitro assessments of DUNP19LF-FcIII-DOTASS and DUNP19LF-gly-DOTASS demonstrated markedly decreased affinity for FcRn and FcγRIIIa (CD16), respectively. DUNP19LF-FcIII-DOTASS demonstrated increased blood and tissue kinetics in vivo, confirming loss of FcRn binding. While the ablated FcγR interaction of DUNP19LF-gly-DOTASS had no immediate impact on in vivo biodistribution, reduced immunotherapeutic effect can be expected in future studies as a result of reduced NK-cells interaction. In conclusion, our findings underscore the necessity for meticulous consideration and evaluation of mAb labelling strategies, extending beyond mere conjugation efficiency and radiolabeling yields. Notably, site-specific labelling methods were found to significantly influence the immunological impact of Fc interactions. Therefore, it is of paramount importance to consider the intended diagnostic or therapeutic application of the construct and to adopt conjugation strategies that ensure the preservation of critical pharmacological properties and functionality of the antibody in use.
Collapse
Affiliation(s)
- Ábel Nagy
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - David Ulmert
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden
| | - Wahed Zedan
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Claire M Storey
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Julie Park
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Susanne Geres
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Katharina Lückerath
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, DKTK, Essen, Germany
| | | | | | - Norbert Peekhaus
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniel Lj Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA; Oncologic Imaging Program, Siteman Cancer Center, St. Louis, Missouri, USA
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Mohamed Altai
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Sebastiano J, Samuels ZV, Kao WS, Zeglis BM. Site-specific bioconjugation and nuclear imaging. Curr Opin Chem Biol 2024; 81:102471. [PMID: 38833913 PMCID: PMC11323144 DOI: 10.1016/j.cbpa.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Monoclonal antibodies and antibody fragments have proven to be highly effective vectors for the delivery of radionuclides to target tissues for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). However, the stochastic methods that have traditionally been used to attach radioisotopes to these biomolecules inevitably produce poorly defined and heterogeneous probes and can impair the ability of the immunoglobulins to bind their molecular targets. In response to this challenge, an array of innovative site-specific and site-selective bioconjugation strategies have been developed, and these approaches have repeatedly been shown to yield better-defined and more homogeneous radioimmunoconjugates with superior in vivo performance than their randomly modified progenitors. In this Current Opinion in Chemical Biology review, we will examine recent advances in this field, including the development - and, in some cases, clinical translation - of nuclear imaging agents radiolabeled using strategies that target the heavy chain glycans, peptide tags, and unnatural amino acids.
Collapse
Affiliation(s)
- Joni Sebastiano
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ph.D. Program in Biochemistry, Graduate Center of City University of New York, New York, NY, USA
| | - Zachary V Samuels
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, NY, USA
| | - Wei-Siang Kao
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ph.D. Program in Biochemistry, Graduate Center of City University of New York, New York, NY, USA; Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, NY, USA; Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Amacher JF, Antos JM. Sortases: structure, mechanism, and implications for protein engineering. Trends Biochem Sci 2024; 49:596-610. [PMID: 38692993 DOI: 10.1016/j.tibs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| | - John M Antos
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
4
|
Richard M, Martin Aubert S, Denis C, Dubois S, Nozach H, Truillet C, Kuhnast B. Fluorine-18 and Radiometal Labeling of Biomolecules via Disulfide Rebridging. Bioconjug Chem 2023; 34:2123-2132. [PMID: 37881943 DOI: 10.1021/acs.bioconjchem.3c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Biomolecules labeled with positron-emitting radionuclides like fluorine-18 or radiometals like copper-64 and zirconium-89 are increasingly employed in nuclear medicine for diagnosis purposes. Given the fragility and complexity of these compounds, their labeling requires mild conditions. Besides, it is essential to develop methods inducing minimal modification of the tertiary structure, as it is fundamental for the biological activity of such complex entities. Given these requirements, disulfide rebridging represents a promising possibility since it allows protein modification as well as conservation of the tertiary structure. In this context, we have developed an original radiofluorinated dibromopyridazine dione prosthetic group for labeling of disulfide-containing biomolecules via rebridging. We employed it to radiolabel octreotide, a somatostatin analogue, and to radiolabel fragment antigen binding (Fab) targeting programmed death-ligand 1 (PD-L1), whose properties were then evaluated in vitro and in vivo by positron emission tomography (PET) imaging. We next extended our strategy to the radiolabeling of cetuximab, a monoclonal antibody, with various radiometals commonly used in PET imaging (zirconium-89, copper-64) by developing various rebridging molecules bearing the appropriate chelators. The stabilities of the radiolabeled antibody conjugates were assessed in biological conditions.
Collapse
Affiliation(s)
- Mylène Richard
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| | | | - Caroline Denis
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Paris-Saclay University, Gif-sur-Yvette 91191, France
| | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Paris-Saclay University, Gif-sur-Yvette 91191, France
| | - Charles Truillet
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| | - Bertrand Kuhnast
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| |
Collapse
|
5
|
Debon A, Siirola E, Snajdrova R. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS AU 2023; 3:1267-1283. [PMID: 37234110 PMCID: PMC10207132 DOI: 10.1021/jacsau.2c00617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Enzymes have firmly established themselves as bespoke catalysts for small molecule transformations in the pharmaceutical industry, from early research and development stages to large-scale production. In principle, their exquisite selectivity and rate acceleration can also be leveraged for modifying macromolecules to form bioconjugates. However, available catalysts face stiff competition from other bioorthogonal chemistries. In this Perspective, we seek to illuminate applications of enzymatic bioconjugation in the face of an expanding palette of new drug modalities. With these applications, we wish to highlight some examples of current successes and pitfalls of using enzymes for bioconjugation along the pipeline and try to illustrate opportunities for further development.
Collapse
Affiliation(s)
- Aaron Debon
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Elina Siirola
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Radka Snajdrova
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| |
Collapse
|
6
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Tran VL, Bouleau A, Nozach H, Richard M, Chevaleyre C, Dubois S, Kereselidze D, Kuhnast B, Evans MJ, Specklin S, Truillet C. Impact of Radiolabeling Strategies on the Pharmacokinetics and Distribution of an Anti-PD-L1 PET Ligand. Mol Pharm 2022; 19:3673-3680. [PMID: 35998011 DOI: 10.1021/acs.molpharmaceut.2c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular imaging with PET offers an alternative method to quantify programmed-death-ligand 1 (PD-L1) to accurately select patients for immunotherapies. More and more clinical and preclinical trials involve radiolabeling of antibody fragments for their desirably fast clearance and high tumor penetration. As the radiolabeling strategy can significantly impact pharmacokinetics and biodistribution, we explored in this work a site-specific radiofluorination strategy on an anti-PD-L1 fragment antigen-binding (Fab) and compared the pharmacokinetic and biodistribution properties with the same Fab labeled using stochastic radiolabeling chemistry. We applied an enzymatic bioconjugation mediated by a variant of the lipoic acid ligase (LplA) that promotes the formation of an amide bond between a short peptide cloned onto the C terminus of the Fab. A synthetic analogue of the enzyme natural substrate, lipoic acid, was radiolabeled with fluorine-18 for site-specific conjugation by LplA. We compared the biodistribution of the site-specifically labeled Fab with a stochastically labeled Fab on lysine side chains in tumor-bearing mice. The two methods of fluorination demonstrate a comparable whole-body biodistribution. The 89Zr-labeled Fab had different biodistribution compared to either 18F-labeled Fab. We attribute the difference to [89Zr] metabolism. Fab-LAP-[18F]FPyOctA therefore reflects better the true pharmacokinetic profile of the Fab.
Collapse
Affiliation(s)
- Vu Long Tran
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Alizée Bouleau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Hervé Nozach
- Université Paris-Saclay, CEA, DMTS, SIMoS, CEA-Saclay, Gif-sur-Yvette CEDEX 91191, France
| | - Mylène Richard
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Céline Chevaleyre
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Steven Dubois
- Université Paris-Saclay, CEA, DMTS, SIMoS, CEA-Saclay, Gif-sur-Yvette CEDEX 91191, France
| | - Dimitri Kereselidze
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Bertrand Kuhnast
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California 94107, United States
| | - Simon Specklin
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| |
Collapse
|
8
|
Negi S, Hamori M, Sato A, Shimizu K, Kawahara-Nakagawa Y, Manabe T, Shibata N, Kitagishi H, Mashimo M, Sugiura Y. Transpeptidation reaction mediated by ligand- and metal cofactor-substituted Sortase A from Staphylococcus aureus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Ayaka Sato
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Kyoko Shimizu
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yuka Kawahara-Nakagawa
- Graduate School of Faculty of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297
| | - Takayuki Manabe
- Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321
| | - Masato Mashimo
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| |
Collapse
|
9
|
Brunello S, Salvarese N, Carpanese D, Gobbi C, Melendez-Alafort L, Bolzati C. A Review on the Current State and Future Perspectives of [ 99mTc]Tc-Housed PSMA-i in Prostate Cancer. Molecules 2022; 27:molecules27092617. [PMID: 35565970 PMCID: PMC9099988 DOI: 10.3390/molecules27092617] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, prostate-specific membrane antigen (PSMA) has gained momentum in tumor nuclear molecular imaging as an excellent target for both the diagnosis and therapy of prostate cancer. Since 2008, after years of preclinical research efforts, a plentitude of radiolabeled compounds mainly based on low molecular weight PSMA inhibitors (PSMA-i) have been described for imaging and theranostic applications, and some of them have been transferred to the clinic. Most of these compounds include radiometals (e.g., 68Ga, 64Cu, 177Lu) for positron emission tomography (PET) imaging or endoradiotherapy. Nowadays, although the development of new PET tracers has caused a significant drop in single-photon emission tomography (SPECT) research programs and the development of new technetium-99m (99mTc) tracers is rare, this radionuclide remains the best atom for SPECT imaging owing to its ideal physical decay properties, convenient availability, and rich and versatile coordination chemistry. Indeed, 99mTc still plays a relevant role in diagnostic nuclear medicine, as the number of clinical examinations based on 99mTc outscores that of PET agents and 99mTc-PSMA SPECT/CT may be a cost-effective alternative for 68Ga-PSMA PET/CT. This review aims to give an overview of the specific features of the developed [99mTc]Tc-tagged PSMA agents with particular attention to [99mTc]Tc-PSMA-i. The chemical and pharmacological properties of the latter will be compared and discussed, highlighting the pros and cons with respect to [68Ga]Ga-PSMA11.
Collapse
Affiliation(s)
- Sara Brunello
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy; (S.B.); (N.S.)
| | - Nicola Salvarese
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy; (S.B.); (N.S.)
| | - Debora Carpanese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35124 Padova, Italy;
| | - Carolina Gobbi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Melendez-Alafort
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35124 Padova, Italy;
- Correspondence: (L.M.-A.); (C.B.)
| | - Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy; (S.B.); (N.S.)
- Correspondence: (L.M.-A.); (C.B.)
| |
Collapse
|
10
|
Melis DR, Burgoyne AR, Ooms M, Gasser G. Bifunctional chelators for radiorhenium: past, present and future outlook. RSC Med Chem 2022; 13:217-245. [PMID: 35434629 PMCID: PMC8942221 DOI: 10.1039/d1md00364j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 01/16/2023] Open
Abstract
Targeted radionuclide therapy (TRNT) is an ever-expanding field of nuclear medicine that provides a personalised approach to cancer treatment while limiting toxicity to normal tissues. It involves the radiolabelling of a biological targeting vector with an appropriate therapeutic radionuclide, often facilitated by the use of a bifunctional chelator (BFC) to stably link the two entities. The radioisotopes of rhenium, 186Re (t 1/2 = 90 h, 1.07 MeV β-, 137 keV γ (9%)) and 188Re (t 1/2 = 16.9 h, 2.12 MeV β-, 155 keV γ (15%)), are particularly attractive for radiotherapy because of their convenient and high-abundance β--particle emissions as well as their imageable γ-emissions and chemical similarity to technetium. As a transition metal element with multiple oxidation states and coordination numbers accessible for complexation, there is great opportunity available when it comes to developing novel BFCs for rhenium. The purpose of this review is to provide a recap on some of the past successes and failings, as well as show some more current efforts in the design of BFCs for 186/188Re. Future use of these radionuclides for radiotherapy depends on their cost-effective availability and this will also be discussed. Finally, bioconjugation strategies for radiolabelling biomolecules with 186/188Re will be touched upon.
Collapse
Affiliation(s)
- Diana R Melis
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| | - Andrew R Burgoyne
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Maarten Ooms
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| |
Collapse
|
11
|
Bolzati C, Salvarese N, Spolaore B, Vittadini A, Forrer D, Brunello S, Ghiani S, Maiocchi A. Water-Soluble [Tc(N)(PNP)] Moiety for Room-Temperature 99mTc Labeling of Sensitive Target Vectors. Mol Pharm 2022; 19:876-894. [DOI: 10.1021/acs.molpharmaceut.1c00816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Nicola Salvarese
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, I-35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padua, 35121 Padova, Italy
| | - Andrea Vittadini
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, I-35131 Padova, Italy
| | - Daniel Forrer
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, I-35131 Padova, Italy
| | - Sara Brunello
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Simona Ghiani
- Bracco Imaging SpA, Bioindustry Park del Canavese, Via Ribes 5, Colleretto Giacosa, 10010 Torino, Italy
| | | |
Collapse
|